Skip to main content
Log in

The Gauss maps of Demoulin surfaces with conformal coordinates

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Demoulin surfaces in the real projective 3-space are investigated. Our result enables us to establish a generalized Weierstrass type representation for definite Demoulin surfaces by virtue of primitive maps into a certain semi-Riemannian 6-symmetric space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black M. Harmonic Maps into Homogeneous Spaces. Pitman Research Notes in Mathematics Series, vol. 255. New York: John Wiley & Sons, 1991

    MATH  Google Scholar 

  2. Bolton J, Pedit F, Woodward L. Minimal surfaces and the affine Toda field model. J Reine Angew Math, 1995, 459: 119–150

    MathSciNet  MATH  Google Scholar 

  3. Bolton J, Woodward L M. Congruence theorems for harmonic maps from a Riemann surface into ℂPn and Sn. J Lond Math Soc (2), 1992, 45: 363–376

    Article  Google Scholar 

  4. Burstall F E, Hertrich-Jeromin U. Harmonic maps in unfashionable geometries. Manuscripta Math, 2002, 108: 171–189

    Article  MathSciNet  Google Scholar 

  5. Burstall F E, Pedit F. Dressing orbits of harmonic maps. Duke Math J, 1985, 80: 353–382

    MathSciNet  MATH  Google Scholar 

  6. Burstall F E, Pedit F. Harmonic maps via Adler-Kostant-Symes theory. In: Harmonic Maps and Integrable Systems. Aspects of Mathematics, vol. 23. Wiesbaden: Vieweg+Teubner Verlag, 1994, 221–272

    Chapter  Google Scholar 

  7. Chern S S, Wolfson J G. Harmonic maps of the two-sphere into a complex Grassmann manifolds II. Ann of Math (2), 1987, 125: 301–335

    Article  MathSciNet  Google Scholar 

  8. Clarke D J. Integrability in submanifold geometry. PhD Thesis. Bath: University of Bath, 2012

    Google Scholar 

  9. Darboux G. Leçons Sur La Théorie Générale Des Surfaces. I. Paris: Gauthier-Villars, 1914

    MATH  Google Scholar 

  10. Darboux G. Leçons Sur La Théorie Générale Des Surfaces. II. Paris: Gauthier-Villars, 1915

    MATH  Google Scholar 

  11. Demoulin A. Sur deux transformations des surfaces dont les quadriques de Lie n’ont que deux ou trois points caractéristiques. Bull Acad Roy Belg V, 1933, 19: 479–502, 579–592, 1352–1363

    MATH  Google Scholar 

  12. Dorfmeister J, McIntosh I, Pedit F, et al. On the meromorphic potential for a harmonic surface in a k-symmetric space. Manuscripta Math, 1997, 92: 143–152

    Article  MathSciNet  Google Scholar 

  13. Dorfmeister J F, Freyn W, Kobayashi S-P, et al. Survey on real forms of the complex A (2)2 -Toda equation and surface theory. Complex Manifolds, 2019, 6: 194–227

    Article  MathSciNet  Google Scholar 

  14. Ferapontov F E. Integrable systems in projective differential geometry. Kyushu J Math, 2000, 54: 183–215

    Article  MathSciNet  Google Scholar 

  15. Hu H S. Darboux transformations of Su-chain. In: Differential Geometry. Proceedings of the Symposium in Honour of Professor Su Buchin on His 90th Birthday. Singapore: World Scientific, 1993, 325–380

    Google Scholar 

  16. Kobayashi S-P. A loop group method for Demoulin surfaces in the 3-dimensional real projective space. Differential Geom Appl, 2015, 40: 57–66

    Article  MathSciNet  Google Scholar 

  17. Lane E P. Projective Differential Geometry of Curves and Surfaces. Chicago: The University of Chicago Press, 1932

    MATH  Google Scholar 

  18. LeBrun C, Mason L J. Nonlinear gravitons, null geodesics, and holomorphic disks. Duke Math J, 2007, 136: 205–273

    Article  MathSciNet  Google Scholar 

  19. Musso E, Nicolodi L. Tableaux over Lie algebras, integrable systems, and classical surface theory. Comm Anal Geom, 2006, 14: 475–496

    Article  MathSciNet  Google Scholar 

  20. Nomizu K, Sasaki T. Centroaffine immersions of codimension two and projective hypersurface theory. Nagoya Math J, 1993, 132: 63–90

    Article  MathSciNet  Google Scholar 

  21. Nomizu K, Sasaki T. Affine Differential Geometry: Geometry of Affine Immersions. Cambridge: Cambridge University Press, 1994

    MATH  Google Scholar 

  22. Pa C. On the surfaces whose asymptotic curves of one system are projectively equivalent. Univ Nac Tucuman Revista A, 1942, 3: 341–349

    MathSciNet  MATH  Google Scholar 

  23. Pa C. A new definition of the Godeaux sequence of quadrics. Amer J Math, 1947, 69: 117–120

    Article  MathSciNet  Google Scholar 

  24. Pick G. Über affine Geometrie IV: Differentialinvarianten der Flächen gegenüber affinen Transformationen. Berichte Verh Ges Wiss Leibzig, 1917, 69: 107–136

    MATH  Google Scholar 

  25. Sasaki T. Projective Differential Geometry and Linear Homogeneous Differential Equations. Kobe: Kobe University, 1999

    Google Scholar 

  26. Sasaki T. Line congruence and transformation of projective surfaces. Kyushu J Math, 2006, 60: 101–243

    Article  MathSciNet  Google Scholar 

  27. Su B. On certain periodic sequences of Laplace of period four in ordinary space. Sci Rep Tohoku Imp Univ, 1936, 25: 227–256

    MATH  Google Scholar 

  28. Su B. On certain couples of closed Laplace sequences of period four in ordinary space. Scientia Sinica, 1964, 13: 347–374

    MathSciNet  Google Scholar 

  29. Su B. The growth and development of differential geometry in China (in Japanese). Sūgaku, 1983, 35: 221–228

    MathSciNet  Google Scholar 

  30. Thomsen G. Sulle superficie minime proiettive. Ann Mat Pura Appl (4), 1928, 5: 169–184

    Article  MathSciNet  Google Scholar 

  31. Wilczynski E J. Projective Differential Geometry of Curves and Ruled Surfaces. Leipzig: B G Teubner, 1906

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Nos. JP18K03265 and JP19K03461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Inoguchi.

Additional information

In Memory of Professor Zhengguo Bai (1916–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoguchi, Ji., Kobayashi, S. The Gauss maps of Demoulin surfaces with conformal coordinates. Sci. China Math. 64, 1479–1492 (2021). https://doi.org/10.1007/s11425-020-1738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-020-1738-0

Keywords

MSC(2010)

Navigation