Skip to main content
Log in

Conformal Gauss Map Geometry and Application to Willmore Surfaces in Model Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we make a detailed and self-contained study of the conformal Gauss map. Then, starting from the seminal work of Bryant (J. Differential Geom. 20(1), 23–53 1984) and the notion of conformal Gauss map, we recover many fundamental properties of Willmore surfaces. We also get new results like some characterizations of minimal and constant mean curvature (CMC) surfaces in term of their conformal Gauss map behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akivis, M.A., Goldberg, V.: Conformal Differential Geometry and its Generalizations. Pure and Applied Mathematics (New York). Wiley, New York (1996). A Wiley-Interscience Publication

    Book  Google Scholar 

  2. Bernard, Y.: Noether’s theorem and the Willmore functional. Adv. Calc Var. 9 (3), 217–234 (2016)

    Article  MathSciNet  Google Scholar 

  3. Blaschke, W.: Vorlesungen über Integralgeometrie. Deutscher Verlag der Wissenschaften, Berlin (1955). 3te Aufl

    MATH  Google Scholar 

  4. Bohle, C.: Constant mean curvature tori as stationary solutions to the Davey-Stewartson equation. Math. Z. 271(1-2), 489–498 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bryant, R.: A duality theorem for Willmore surfaces. J. Differential Geom. 20 (1), 23–53 (1984)

    Article  MathSciNet  Google Scholar 

  6. Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. In: Differential Geometry and Integrable Systems (Tokyo, 2000), Volume 308 of Contemp. Math., pp 39–61. Amer. Math. Soc., Providence (2002)

  7. Dorfmeister, J., Wang, P.: Weierstrass-kenmotsu representation of willmore surfaces in spheres. arXiv:1901.08395 (2019)

  8. Dorfmeister, J., Wang, P.: Willmore surfaces in spheres: the DPW approach via the conformal gauss map. arXiv:1903.00883 (2019)

  9. Ejiri, N.: Willmore surfaces with a duality in SN(1). Proc. London Math. Soc. (3) 57(2), 383–416 (1988)

    Article  MathSciNet  Google Scholar 

  10. Eschenburg, J.-H.: Willmore surfaces and Moebius geometry (1988)

  11. Hélein, F.: Willmore immersions and loop groups. J. Differential Geom. 50(2), 331–385 (1998)

    Article  MathSciNet  Google Scholar 

  12. Hélein, F.: A Weierstrass representation for Willmore surfaces. In: Harmonic Morphisms, Harmonic Maps, and Related Topics (Brest, 1997), Volume 413 of Chapman & Hall/CRC Res. Notes Math., pp 287–302. Chapman & Hall/CRC, Boca Raton (2000)

  13. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, Volume 150 of Cambridge Tracts in Mathematics, 2nd edn. Cambridge University Press, Cambridge (2002). Translated from the 1996 French original with a foreword by James Eells

    Book  Google Scholar 

  14. Marque, N., Michelat, A.: Willmore surfaces of bounded index. In preparation

  15. Michelat, A.: PhD thesis. to be published

  16. Michelat, A., Rivière, T.: The classification of branched Willmore spheres in the 3-sphere and the 4-sphere. arXiv:1706.01405 (2017)

  17. Montiel, S.: Willmore two-spheres in the four-sphere. Trans. Amer. Math. Soc. 352(10), 4469–4486 (2000)

    Article  MathSciNet  Google Scholar 

  18. Palmer, B.: The conformal Gauss map and the stability of Willmore surfaces. Ann. Global Anal. Geom. 9(3), 305–317 (1991)

    Article  MathSciNet  Google Scholar 

  19. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)

    Article  MathSciNet  Google Scholar 

  20. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45 (2008)

    Article  MathSciNet  Google Scholar 

  21. Rivière, T.: Sequences of smooth global isothermic immersions. Comm. Partial Differential Equations 38(2), 276–303 (2013)

    Article  MathSciNet  Google Scholar 

  22. Rivière, T.: Weak immersions of surfaces with L2-bounded second fundamental form. In: Geometric Analysis, Volume 22 of IAS/Park City Math. Ser., pp 303–384. Amer. Math. Soc., Providence (2016)

  23. Thomsen, G.: Über Konforme Geometrie I: Grundlagen der konformen Flachentheorie. Abh. Math. Sem. Hamburg. 3te Aufl (1923)

  24. Willmore, T.: Riemannian Geometry. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1993)

  25. Zhu, M.: Regularity for harmonic maps into certain pseudo-Riemannian manifolds. J. Math. Pures Appl. (9) 99(1), 106–123 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Paul Laurain for his support and advices, and Alexis Michelat for helpful and enlightening conversations. This work was partially supported by the ANR BLADE-JC ANR- 18-CE40-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Marque.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Formulas in \(\mathbb {R}^{3}\)

Let \({\Phi } : \mathbb {D} \rightarrow \mathbb {R}^{3}\) be a smooth conformal immersion. Let \(\vec {n} = \frac {{\Phi }_{z} \times {\Phi }_{\bar {z}} }{ i \left | {\Phi }_{z} \right |^{2} }\) denote its Gauss map (with × the classical vectorial product in \(\mathbb {R}^{3}\)), \(\lambda = \frac {1}{2} \log \left (2 \left | {\Phi }_{z} \right |^{2} \right )\) its conformal factor and \(H = \left \langle \frac { {\Phi }_{z \bar {z}}}{ \left | {\Phi }_{z} \right |^{2}} , \vec {n} \right \rangle \) its mean curvature. Its tracefree curvature is defined as follows

$${\Omega}:= 2\left\langle {\Phi}_{zz}, \vec{n} \right\rangle. $$

Then

$$ \vec{n}_{z} = - H {\Phi}_{z} - {\Omega} e^{-2 \lambda} {\Phi}_{\bar{z}}, $$
(60)
$$ {\Phi}_{z \bar{z}} = H \frac{e^{2\lambda}}{2} \vec{n} , $$
(61)
$$ {\Phi}_{z z} = 2 \lambda_{z} {\Phi}_{z} + \frac{\Omega}{2} \vec{n} $$
(62)

and Gauss-Codazzi can be written

$$ {\Omega}_{\bar{z}} e^{-2\lambda} = H_{z} . $$
(63)

Further if we write , \( A = \langle \nabla ^{2} {\Phi } , \vec {n} \rangle \), the second fundamental form of Φ, such that

$$ e^{-2\lambda} A= \left( \begin{array}{cccc} \epsilon & \varphi \\ \varphi & \gamma \end{array}\right),$$

then

$$ H= \frac{ \epsilon + \gamma }{2},$$
$$ \mathring{A} = \left( \begin{array}{cccc} \frac{\epsilon - \gamma }{2} & \varphi \\ \varphi & \frac{\gamma - \epsilon}{2} \end{array}\right),$$

with Å the tracefree second fundamental form defined in Eq. 9 and

$$ \begin{array}{llll} \nabla \vec{n} &= - H \nabla {\Phi} - \mathring{A} \nabla {\Phi} = \left( \begin{array}{cccc} \epsilon {\Phi}_{x} + \varphi {\Phi}_{y} \\ \varphi {\Phi}_{x} + \gamma {\Phi}_{y} \end{array}\right) \\ &= - H \nabla {\Phi} - \left( \begin{array}{cccc} \frac{\epsilon - \gamma }{2} {\Phi}_{x} + \varphi {\Phi}_{y} \\ \varphi {\Phi}_{x} - \frac{\epsilon - \gamma }{2} {\Phi}_{y} \end{array}\right). \end{array} $$
(64)

We can check

$$ \begin{array}{llll} \vec{n} \times \mathring{A} \nabla {\Phi} &= \vec{n} \times \left( \begin{array}{cccc} \frac{\epsilon - \gamma }{2} {\Phi}_{x} + \varphi {\Phi}_{y} \\ \varphi {\Phi}_{x} - \frac{\epsilon - \gamma }{2} {\Phi}_{y} \end{array}\right) \\ &= \left( \begin{array}{cccc} \frac{\epsilon - \gamma }{2} {\Phi}_{y} - \varphi {\Phi}_{x} \\ \varphi {\Phi}_{y} + \frac{\epsilon - \gamma }{2} {\Phi}_{x} \end{array}\right) \end{array}$$

and notice

$$ \nabla^{\perp} \vec{n} = - H \nabla^{\perp} {\Phi} - \vec{n} \times \mathring{A} \nabla {\Phi}. $$
(65)

1.2 A.2 Formulas in \(\mathbb {S}^{3}\)

Let \({\Phi } : \mathbb {D} \rightarrow \mathbb {R}^{3}\) be a smooth conformal immersion and \(X = \pi ^{-1} \circ {\Phi } : \mathbb {D} \rightarrow \mathbb {S}^{3}\). Let \({\Lambda } := \frac {1}{2} \log \left (2 \left | X_{z} \right |^{2} \right )\) be its conformal factor, \(\vec {N}\) such that \(\left (X, e^{-{\Lambda }} X_{x}, e^{- {\Lambda }} X_{y}, \vec {N} \right )\) is a direct orthonormal basis of \(\mathbb {R}^{4}\) its Gauss map, \( h = \left \langle \frac {X_{z\bar {z}}}{\left | X_{z} \right |^{2}}, \vec {N} \right \rangle \) its mean curvature and \(\omega := 2\left \langle X_{zz}, \vec {n} \right \rangle \) its tracefree curvature. Then

$$ X := \frac{1}{1+ |{\Phi}|^{2}} \left( \begin{array}{cccc} 2{\Phi} \\ |{\Phi}|^{2}-1 \end{array}\right) $$
(66)

which yields

$$ \begin{array}{llll} X_{z} &= d\pi^{-1} \left( {\Phi}_{z} \right)= \frac{2}{1+|{\Phi}|^{2} } \left( \begin{array}{cccc} {\Phi}_{z} \\ 0 \end{array}\right) -\frac{ 4 \langle {\Phi}_{z}, {\Phi} \rangle_{3}}{ \left( 1+ |{\Phi}|^{2} \right)^{2} } \left( \begin{array}{cccc} {\Phi} \\ -1 \end{array}\right). \end{array} $$
(67)

Since π is conformal, \(\left \langle d \pi ^{-1} \left ({\Phi }_{z} \right ), d \pi ^{-1} \left (\vec {n} \right ) \right \rangle = \left \langle {\Phi }_{z}, \vec {n} \right \rangle =0\). Then \( \vec {N} = \frac { d \pi ^{-1} \left (\vec {n} \right )}{ \left | d \pi ^{-1} \left (\vec {n} \right ) \right |}\) and thus

$$ \begin{array}{llll} \vec{N} &=\left( \begin{array}{cccc} \vec{n} \\ 0 \end{array}\right) - \frac{2 \langle \vec{n}, {\Phi} \rangle }{1+ |{\Phi}|^{2} } \left( \begin{array}{cccc} {\Phi} \\ -1 \end{array}\right). \end{array} $$
(68)

Using the corresponding definitions we successively deduce

$$ \begin{array}{llll} e^{2 {\Lambda}} &=2 \left\langle X_{z}, X_{\bar{z}} \right\rangle = \frac{4}{\left( 1+ |{\Phi}|^{2} \right)^{2} } e^{2\lambda} , \end{array} $$
(69)
$$ \begin{array}{llll} h &= \left\langle \frac{X_{z \bar{z}}}{ \left| X_{z} \right|^{2}}, \vec{N} \right\rangle = \frac{|{\Phi}|^{2} +1}{2}H + \langle \vec{n} , {\Phi} \rangle_{3} \end{array} $$
(70)
$$ \begin{array}{llll} \omega &= 2 \left\langle X_{zz}, \vec{N} \right\rangle= \frac{2{\Omega}}{1+ | {\Phi}|^{2} }. \end{array} $$
(71)

Then one can compute

$$ \begin{array}{llll} h \left( \begin{array}{cccc} X \\1 \end{array}\right) + \left( \begin{array}{cccc} \vec{N} \\ 0 \end{array}\right) &= \left( \frac{|{\Phi}|^{2} +1}{2}H + \langle \vec{n} , {\Phi} \rangle \right) \left( \begin{array}{cccc} \frac{2 {\Phi}}{1+ |{\Phi}|^{2}} \\ \frac{|{\Phi}|^{2}-1}{1+ |{\Phi}|^{2}} \\ 1 \end{array}\right)+ \left( \begin{array}{cccc} \vec{n} - \frac{2 \langle \vec{n}, {\Phi} \rangle }{1+ |{\Phi}|^{2} } {\Phi} \\ \frac{2 \langle \vec{n}, {\Phi} \rangle }{1+ |{\Phi}|^{2} } \\ 0 \end{array}\right) \\ &= \left( \begin{array}{cccc} H {\Phi} + \frac{2 \langle \vec{n}, {\Phi} \rangle }{1+ |{\Phi}|^{2} } {\Phi} \\ H \frac{ | {\Phi} |^{2} - 1 }{2} + \langle \vec{n} , {\Phi} \rangle \frac{|{\Phi}|^{2}-1}{1+ |{\Phi}|^{2}} \\ H \frac{ | {\Phi}|^{2} +1}{2} + \langle \vec{n}, {\Phi} \rangle \end{array}\right) + \left( \begin{array}{cccc} \vec{n} - \frac{2 \langle \vec{n}, {\Phi} \rangle }{1+ |{\Phi}|^{2} } {\Phi} \\ \frac{2 \langle \vec{n}, {\Phi} \rangle }{1+ |{\Phi}|^{2} } \\ 0 \end{array}\right) \\ &= H \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) + \left( \begin{array}{cccc} \vec{n} \\ \langle \vec{n} ,{\Phi} \rangle \\ \langle \vec{n} , {\Phi} \rangle \end{array}\right). \end{array} $$
(72)

This shows that

$$ Y = h \left( \begin{array}{cccc} X \\ 1 \end{array}\right) + \left( \begin{array}{cccc} N \\ 0 \end{array}\right). $$
(73)

One may wish to compute in \(\mathbb {S}^{3}\) without going through Φ. The relevant formulas then are

$$ \vec{N}_{z} = - h X_{z} - \omega e^{-2 {\Lambda}} X_{\bar{z}}, $$
(74)
$$ X_{z \bar{z}} = h \frac{e^{2{\Lambda}}}{2} \vec{N} - \frac{e^{2{\Lambda}}}{2} X , $$
(75)
$$ X_{z z} = 2 {\Lambda}_{z} X_{z} + \frac{\omega}{2} \vec{N}, $$
(76)

and Gauss-Codazzi can be written

$$ \omega_{\bar{z}} e^{-2{\Lambda}} = h_{z} . $$
(77)

1.3 A.3 Mean Curvature of a Sphere in \(\mathbb {S}^{3}\)

Let σ be a sphere in \(\mathbb {S}^{3}\). Up to an isometry of \(\mathbb {S}^{3}\) σ can be assumed to be a sphere centered on the south pole S of radius \(r \le \frac {\pi }{2}\). Then πσ is a sphere of \(\mathbb {R}^{3}\) centered on the origin of radius R ≤ 1. It can be conformally parametrized over \(\mathbb {R}^{2} \cup \infty \) by \({\Phi } (x,y) = \frac {R}{1+ x^{2} +y^{2}} \left (\begin {array}{cccc} 2x \\2 y \\ x^{2} +y^{2}-1 \end {array}\right )\), of constant mean curvature \(H = \frac {1}{R}\). Then σ is conformally parametrized by

$$X = \frac{ 1}{1+ R^{2}} \left( \begin{array}{cccc} \frac{2R}{1+ x^{2} +y^{2}} \left( \begin{array}{cccc} 2x \\2 y \\ x^{2} +y^{2}-1 \end{array}\right) \\ R^{2} -1 \end{array}\right).$$

One can easily compute using basic trigonometry the tangent of r and find

$$ \begin{array}{llll} \tan \left( r \right) &= \frac{2R }{1-R^{2}}. \end{array}$$

Computing h at any point (x, y) using (70) yields with \(H= \frac {1}{R}\), \(\vec {n} = - \frac {\Phi }{R}\) (Fig. 3)

$$h= \frac{R^{2} +1}{2R} - R = \frac{1}{\tan (r)}$$

for any (x, y).

Fig. 3
figure 3

2D illustration

Since neither h nor r change under the action of isometries, any sphere σ of \(\mathbb {S}^{3}\) of radius r has constant mean curvature

$$ h = \text{cotan} (r). $$
(78)

1.4 A.4 Formulas in \(\mathbb {H}^{3}\)

Let \({\Phi } : \mathbb {D} \rightarrow \mathbb {R}^{3}\) be a smooth conformal immersion and \(Z = {\tilde \pi }^{-1} \circ {\Phi } : \mathbb {D} \rightarrow \mathbb {H}^{3}\). Then

$$ Z := \frac{1}{1- |{\Phi}|^{2}} \left( \begin{array}{cccc} 2{\Phi} \\ |{\Phi}|^{2}+1 \end{array}\right) $$
(79)

which yields

$$ \begin{array}{llll} Z_{z} &= \frac{2}{1- | {\Phi}|^{2} } \left( \begin{array}{cccc} {\Phi}_{z} \\ 0 \end{array}\right) + \frac{4 \langle {\Phi}_{z} , {\Phi} \rangle }{\left( 1- | {\Phi}|^{2} \right)^{2}} \left( \begin{array}{cccc} {\Phi} \\ 1 \end{array}\right) . \end{array} $$
(80)

Since \(\tilde \pi \) is conformal, \(\left \langle d \tilde \pi ^{-1} \left (\vec {n} \right ) ,Z_{z}\right \rangle = \left \langle {\Phi }_{z} , \vec {n} \right \rangle = 0\). Then \( \vec {n}^{Z} = \frac {d \tilde \pi ^{-1} (\vec {n})}{ \left | d \tilde \pi ^{-1} \left (\vec {n} \right ) \right |}\) and thus

$$ \begin{array}{llll} \vec{n}^{Z} &= \left( \begin{array}{cccc} \vec{n} \\ 0 \end{array}\right) + \frac{2 \langle \vec{n}, {\Phi} \rangle }{1- |{\Phi}|^{2}} \left( \begin{array}{cccc} {\Phi} \\ 1 \end{array}\right). \end{array} $$
(81)

Using the corresponding definition, we successively deduce

$$ \begin{array}{llll} e^{2\lambda^{Z}} &= \frac{4}{\left( 1- |{\Phi}|^{2} \right)^{2} } e^{2\lambda} , \end{array} $$
(82)
$$ \begin{array}{llll} H^{Z} &= \frac{1- |{\Phi}|^{2}}{2} H - \langle \vec{n} , {\Phi} \rangle , \end{array} $$
(83)
$$ \begin{array}{llll} {\Omega}^{Z} &= \frac{2{\Omega}}{1-|{\Phi}|^{2}}. \end{array} $$
(84)

Then one can compute

$$ \begin{array}{llll} H^{Z} \left( \begin{array}{cccc} Z_{h} \\ -1 \\ Z_{4} \end{array}\right) + \left( \begin{array}{cccc} {\vec{n}^{Z}_{h}} \\ 0 \\ {\vec{n}^{Z}_{4}} \end{array}\right) &= \left( \frac{1- |{\Phi}|^{2}}{2} H - \langle \vec{n} , {\Phi} \rangle \right) \left( \begin{array}{cccc} \frac{2 {\Phi}}{1- |{\Phi}|^{2}} \\ -1 \\ \frac{|{\Phi}|^{2}+1}{1-|{\Phi}|^{2}} \end{array}\right) + \left( \begin{array}{cccc} \vec{n} + \frac{2 \langle \vec{n}, {\Phi} \rangle }{1- |{\Phi}|^{2} } {\Phi} \\ 0 \\ \frac{2 \langle \vec{n},{\Phi} \rangle }{1- |{\Phi}|^{2} } \end{array}\right) \\ &= \left( \begin{array}{cccc} H {\Phi} - \frac{2 \langle \vec{n}, {\Phi} \rangle }{1- |{\Phi}|^{2} } {\Phi} \\- \frac{1- |{\Phi}|^{2}}{2} H + \langle \vec{n} , {\Phi} \rangle \\ H \frac{ | {\Phi} |^{2} +1 }{2} - \langle \vec{n}, {\Phi} \rangle \frac{|{\Phi}|^{2}+1}{1-|{\Phi}|^{2}} \end{array}\right) + \left( \begin{array}{cccc} \vec{n} + \frac{2 \langle \vec{n}, {\Phi} \rangle }{1- |{\Phi}|^{2} } {\Phi} \\ 0 \\ \frac{2 \langle \vec{n}, {\Phi} \rangle }{1- |{\Phi}|^{2} } \end{array}\right) \\ &= H \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) + \left( \begin{array}{cccc} \vec{n} \\ \langle \vec{n} ,{\Phi} \rangle \\ \langle \vec{n} , {\Phi} \rangle \end{array}\right). \end{array} $$
(85)

Which shows that

$$ Y = H^{Z} \left( \begin{array}{cccc} Z_{h} \\ -1 \\ Z_{4} \end{array}\right) + \left( \begin{array}{cccc} {\vec{n}_{h}^{Z}} \\ 0 \\ {\vec{n}_{4}^{Z}} \end{array}\right). $$
(86)

1.5 A.5 Computations for the Conformal Gauss Map

Let \({\Phi } : \mathbb {D} \rightarrow \mathbb {R}^{3}\) be a smooth conformal immersion of representation X in \(\mathbb {S}^{3}\) and of conformal Gauss map Y.

Let us first use the expression (16). Then

$$ \begin{array}{llll} Y_{z} &= H_{z} \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) + H \left( \begin{array}{cccc} {\Phi}_{z} \\ \langle {\Phi}_{z} , {\Phi} \rangle \\ \langle {\Phi}_{z} , {\Phi}_{z} \rangle \end{array}\right) + \left( \begin{array}{cccc} \vec{n}_{z} \\ \langle \vec{n}_{z} ,{\Phi} \rangle \\ \langle \vec{n}_{z} , {\Phi} \rangle \end{array}\right) \end{array} $$

and using (60)

$$ Y_{z}= H_{z} \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) - {\Omega} e^{-2\lambda} \left( \begin{array}{cccc} {\Phi}_{\bar{z}} \\ \langle {\Phi}_{\bar{z}}, {\Phi} \rangle \\ \langle {\Phi}_{\bar{z}} , {\Phi} \rangle \end{array}\right). $$
(87)

Using (63) and (62) we compute

$$ \begin{array}{llll} Y_{z \bar{z}} &= H_{z \bar{z}} \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) - \frac{ \left| {\Omega} \right|^{2} }{2}e^{-2\lambda} \left( \begin{array}{cccc} \vec{n} \\ \langle \vec{n}, {\Phi} \rangle \\ \langle \vec{n} , {\Phi}\rangle \end{array}\right) \\ &= \mathcal{W}({\Phi}) \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) - \frac{\left| {\Omega} \right|^{2} e^{-2\lambda} }{2} Y \end{array} $$
(88)

where

$$ \mathcal{W}({\Phi}) = H_{z \bar{z}} + \frac{ \left| {\Omega} \right|^{2} e^{-2\lambda} }{2} H \in \mathbb{R} . $$
(89)

On the other hand

$$ \begin{array}{llll} Y_{zz} &= H_{zz} \left( \begin{array}{cccc} {\Phi} \\ \frac{ | {\Phi}|^{2} -1}{2} \\ \frac{ | {\Phi} |^{2} +1}{2} \end{array}\right) + H_{z} \left( \begin{array}{cccc} {\Phi}_{z} \\ \langle {\Phi}_{z}, {\Phi} \rangle \\ \langle {\Phi}_{z} , {\Phi} \rangle \end{array}\right) - \left( {\Omega} e^{-2 \lambda} \right)_{z} \left( \begin{array}{cccc} {\Phi}_{\bar{z}} \\ \langle {\Phi}_{\bar{z}}, {\Phi} \rangle \\ \langle {\Phi}_{\bar{z}} , {\Phi} \rangle \end{array}\right) \\& - {\Omega} \left( \frac{H}{2} \left( \begin{array}{cccc} \vec{n} \\ \langle \vec{n}, {\Phi} \rangle \\ \langle \vec{n} , {\Phi}\rangle \end{array}\right) + \frac{1}{2} \left( \begin{array}{cccc} 0 \\ 1 \\ 1 \end{array}\right) \right) \end{array} $$
(90)

using (61). Then if we define Bryant’s functional as \(\mathcal {Q} = \left \langle Y_{zz} , Y_{zz} \right \rangle \) we find

$$ \begin{array}{llll} \mathcal{Q} &=H_{zz}{\Omega} - H_{z} \left( {\Omega} e^{-2 \lambda} \right)_{z} e^{2\lambda} + {\Omega} \frac{H^{2}}{4} \\ &= \left( {\Omega}_{\bar{z}} e^{-2\lambda} \right)_{z} {\Omega} - {\Omega}_{\bar{z}} \left( {\Omega} e^{-2 \lambda} \right)_{z} + {\Omega} \frac{H^{2}}{4} \text{using (63)} \\ &= \left( {\Omega}_{z\bar{z}} {\Omega} - {\Omega}_{z} {\Omega}_{\bar{z}} \right) e^{-2\lambda} + {\Omega} \frac{H^{2}}{4} \\ &= {\Omega}^{2} e^{-2 \lambda} \left( \frac{{\Omega}_{z}}{\Omega} \right)_{\bar{z}} + {\Omega} \frac{H^{2}}{4} = {\Omega}^{2} e^{-2 \lambda} \left( \frac{{\Omega}_{\bar{z}}}{\Omega} \right)_{z} + {\Omega} \frac{H^{2}}{4}. \end{array} $$
(91)

We will now do the computations with the \(\mathbb {S}^{3}\) formalism. Then

$$ \begin{array}{llll} Y_{z} &= h_{z} \left( \begin{array}{cccc} X \\ 1 \end{array}\right) + h \left( \begin{array}{cccc} X_{z} \\1 \end{array}\right) + \left( \begin{array}{cccc} \vec{N}_{z} \\ 0 \end{array}\right) \end{array} $$

and using (74)

$$ Y_{z}= h_{z} \left( \begin{array}{cccc} X \\ 1 \end{array}\right) - \omega e^{-2{\Lambda}} \left( \begin{array}{cccc} X_{\bar{z}} \\0 \end{array}\right). $$
(92)

Using (77) and (76) we compute

$$ \begin{array}{llll} Y_{z \bar{z}} &= h_{z \bar{z}} \left( \begin{array}{cccc} X \\ 1 \end{array}\right) - \frac{ \left| \omega \right|^{2} }{2}e^{-2{\Lambda}} \left( \begin{array}{cccc} \vec{N} \\ 0 \end{array}\right) \\ &= \mathcal{W}_{\mathbb{S}^{3}}(X) \left( \begin{array}{cccc}X \\1 \end{array}\right) - \frac{\left| \omega \right|^{2} e^{-2{\Lambda}} }{2} Y \end{array} $$
(93)

where

$$ \mathcal{W}_{\mathbb{S}^{3}}(X) = h_{z \bar{z}} + \frac{ \left| \omega \right|^{2} e^{-2{\Lambda}} }{2} h \in \mathbb{R} . $$
(94)

Using (69), (70) and (71) yields

$$ \begin{array}{llll} \mathcal{W}_{\mathbb{S}^{3}}(X) &= \left( \frac{ |{\Phi}|^{2} +1}{2} H + \langle \vec{n} , {\Phi} \rangle \right)_{z \bar{z}} + \left( \frac{ |{\Phi}|^{2} +1}{2} H + \langle \vec{n} , {\Phi} \rangle \right) \frac{|{\Omega}|^{2}e^{-2 \lambda}}{2} \\ &=\left( \frac{ |{\Phi}|^{2} +1}{2} H_{z} + \langle {\Phi}_{z} , {\Phi} \rangle H + \langle \vec{n}_{z} , {\Phi} \rangle \right)_{\bar{z}} + \frac{ |{\Phi}|^{2} +1}{2} H \frac{ |{\Omega}|^{2} e^{-2\lambda}}{2}\\&+ \langle \vec{n}, {\Phi} \rangle \frac{ |{\Omega}|^{2} e^{-2\lambda}}{2} \\ &= \left( \frac{ |{\Phi}|^{2} +1}{2} H_{z} - {\Omega} e^{-2 \lambda} \langle {\Phi}_{\bar{z}} , {\Phi} \rangle \right)_{\bar{z}} + \frac{ |{\Phi}|^{2} +1}{2} H \frac{ |{\Omega}|^{2} e^{-2\lambda}}{2}\\&+ \langle \vec{n}, {\Phi} \rangle \frac{ |{\Omega}|^{2} e^{-2\lambda}}{2} \\ &= \frac{ |{\Phi}|^{2} +1}{2} \mathcal{W}({\Phi} ) + \langle {\Phi}_{\bar{z}} , {\Phi} \rangle H_{z} - {\Omega}_{\bar{z}} e^{-2\lambda} \langle {\Phi}_{\bar{z}}, {\Phi} \rangle - \frac{ |{\Omega}|^{2} e^{-2\lambda} }{2} \langle \vec{n}, {\Phi} \rangle\\& + \langle \vec{n}, {\Phi} \rangle \frac{ |{\Omega}|^{2} e^{-2\lambda}}{2} \\ &= \frac{ |{\Phi}|^{2} +1}{2} \mathcal{W}({\Phi} ), \end{array} $$
(95)

where we have used (60) to obtain the third equality and (77) to conclude. On the other hand

$$ \begin{array}{llll} Y_{zz} &= h_{zz} \left( \begin{array}{cccc} X \\ 1 \end{array}\right) + h_{z} \left( \begin{array}{cccc} X_{z} \\ 0 \end{array}\right) - \left( \omega e^{-2 {\Lambda}} \right)_{z} \left( \begin{array}{cccc} X_{\bar{z}} \\ 0 \end{array}\right) - \omega \left( \frac{h}{2} \left( \begin{array}{cccc} \vec{N} \\ 0 \end{array}\right) - \frac{1}{2} \left( \begin{array}{cccc} X \\ 0 \end{array}\right) \right) \end{array} $$
(96)

using (61). Then if we define \(\mathcal {Q} = \left \langle Y_{zz} , Y_{zz} \right \rangle \) we find, once more by applying (77),

$$ \begin{array}{llll} \mathcal{Q} &=h_{zz}\omega - h_{z} \left( \omega e^{-2 {\Lambda}} \right)_{z} e^{2{\Lambda}} + \omega^{2} \frac{h^{2}+1}{4} \\ &= \left( \omega_{\bar{z}} e^{-2{\Lambda}} \right)_{z} \omega - \omega_{\bar{z}} \left( \omega e^{-2 {\Lambda}} \right)_{z} + \omega^{2} \frac{h^{2}+1}{4} \\ &= \left( \omega_{z\bar{z}} \omega - \omega_{z} \omega_{\bar{z}} \right) e^{-2{\Lambda}} + \omega^{2} \frac{h^{2}+1}{4} \\ &= \omega^{2} e^{-2 {\Lambda}} \left( \frac{\omega_{z}}{\omega} \right)_{\bar{z}} + \omega^{2} \frac{h^{2}+1}{4} = \omega^{2} e^{-2 {\Lambda}} \left( \frac{\omega_{\bar{z}}}{\omega} \right)_{z} + \omega^{2} \frac{h^{2}+1}{4}. \end{array} $$
(97)

1.6 A.6 Formulas in \(\mathbb {S}^{4,1}\)

This section is devoted to computations for spacelike immersions in \(\mathbb {S}^{4,1}\) without relying on their being the conformal Gauss map of a given immersion.

Let \(Y : D \rightarrow \mathbb {S}^{4,1}\) be a smooth-spacelike conformal immersion, that is Y satisfies

$$\left\langle Y_{z} , Y_{z} \right\rangle = 0$$

and

$$\left\langle Y_{z} , Y_{\bar{z}} \right\rangle =: \frac{e^{2 \mathcal{L}}}{2} >0.$$

Let \(\nu , \nu ^{*} \in \mathcal {C}^{4,1}\) such that \(e = \left (Y, Y_{z} ,Y_{\bar {z}}, \nu , \nu ^{*} \right )\) is an orthogonal frame of \(\mathbb {R}^{4,1}\), that is

$$\left\langle Y, \nu \right\rangle = \left\langle Y_{z}, \nu \right\rangle = \left\langle Y_{\bar{z}}, \nu \right\rangle = \left\langle \nu, \nu \right\rangle =0$$

and

$$\left\langle Y, \nu^{*} \right\rangle = \left\langle Y_{z}, \nu^{*} \right\rangle = \left\langle Y_{\bar{z}}, \nu^{*} \right\rangle = \left\langle \nu^{*}, \nu^{*} \right\rangle =0.$$

We define successively the tracefree curvature in the direction ν

$$ {\Omega}_{\nu} =2 \left\langle Y_{zz}, \nu \right\rangle, $$
(98)

the tracefree curvature in the direction ν

$$ {\Omega}_{\nu^{*}} =2 \left\langle Y_{zz}, \nu^{*} \right\rangle, $$
(99)

the mean curvature in the direction ν

$$ H_{\nu} = 2 e^{-2 \mathcal{L} } \left\langle Y_{z \bar{z}}, \nu \right\rangle, $$
(100)

and the mean curvature in the direction ν

$$ H_{\nu^{*}} = 2 e^{-2 \mathcal{L} } \left\langle Y_{zz}, \nu^{*} \right\rangle. $$
(101)

Then,

$$ Y_{zz} = 2 \mathcal{L}_{z} Y_{z} + \frac{ {\Omega}_{\nu}}{2 \langle \nu , \nu^{*} \rangle } \nu^{*} + \frac{ {\Omega}_{\nu^{*}}}{2 \langle \nu , \nu^{*} \rangle } \nu, $$
(102)

and

$$ Y_{z\bar{z}}= \frac{H_{\nu} e^{2 \mathcal{L} } }{2 \langle \nu , \nu^{*} \rangle } \nu^{*} + \frac{H_{\nu^{*}}e^{2 \mathcal{L} }}{2 \langle \nu , \nu^{*} \rangle } \nu - \frac{e^{2 \mathcal{L} }}{2} Y. $$
(103)

Further

$$ \left\langle \nu_{z}, Y \right\rangle = \left( \left\langle \nu , Y \right\rangle \right)_{z} - \left\langle \nu , Y_{z} \right\rangle = 0, $$
(104)

and with Eq. 102,

$$ \begin{array}{llll} \left\langle \nu_{z}, Y_{z}\right\rangle &= \left( \left\langle \nu , Y_{z} \right\rangle \right)_{z} - \left\langle \nu , Y_{zz} \right\rangle \\ &= -2 \mathcal{L}_{z} \left\langle \nu , Y_{z} \right\rangle - \frac{ {\Omega}_{\nu}}{2 \langle \nu , \nu^{*} \rangle } \langle \nu , \nu^{*} \rangle - \frac{ {\Omega}_{\nu}^{*}}{2 \langle \nu , \nu^{*} \rangle } \langle \nu , \nu \rangle \\ &= - \frac{ {\Omega}_{\nu}}{2}. \end{array} $$
(105)

On the other hand, with Eq. 103 one has

$$ \begin{array}{llll} \left\langle \nu_{z}, Y_{\bar{z}}\right\rangle &= \left( \left\langle \nu , Y_{\bar{z}} \right\rangle \right)_{z} - \left\langle \nu , Y_{z \bar{z}} \right\rangle \\ &= -\frac{ H_{\nu} e^{2 \mathcal{L} } }{2 \langle \nu , \nu^{*} \rangle } \langle \nu , \nu^{*} \rangle \\ &= - \frac{ H_{\nu} e^{2 \mathcal{L} }}{2}, \end{array} $$
(106)

and

$$ \left\langle \nu_{z}, \nu \right\rangle = \left( \langle \nu , \nu \rangle \right)_{z} - \langle \nu , \nu_{z} \rangle, $$

meaning

$$ \left\langle \nu_{z}, \nu \right\rangle = 0. $$
(107)

Combining (104), (105), (106) and (107) yields

$$ \nu_{z}= - \left\langle \nu_{z}, \nu^{*} \right\rangle \nu - H_{\nu} Y_{z} - {\Omega}_{\nu} e^{-2 \mathcal{L} } Y_{\bar{z}}. $$
(108)

Similarly

$$ \left\langle \nu^{*}_{z}, Y \right\rangle = \left( \left\langle \nu^{*} , Y \right\rangle \right)_{z} - \left\langle \nu^{*} , Y_{z} \right\rangle = 0, $$
(109)

and with (102),

$$ \begin{array}{llll} \left\langle \nu^{*}_{z}, Y_{z}\right\rangle &= \left( \left\langle \nu^{*} , Y_{z} \right\rangle \right)_{z} - \left\langle \nu^{*} , Y_{zz} \right\rangle \\ &= -2 \mathcal{L}_{z} \left\langle \nu^{*} , Y_{z} \right\rangle - \frac{ {\Omega}_{\nu^{*}}}{2 \langle \nu , \nu^{*} \rangle } \langle \nu , \nu^{*} \rangle - \frac{ {\Omega}_{\nu}}{2 \langle \nu , \nu^{*} \rangle } \langle \nu^{*} , \nu^{*} \rangle \\ &= - \frac{ {\Omega}_{\nu^{*}}}{2}, \end{array} $$
(110)

while with (103)

$$ \begin{array}{llll} \left\langle \nu^{*}_{z}, Y_{\bar{z}}\right\rangle &= \left( \left\langle \nu^{*} , Y_{\bar{z}} \right\rangle \right)_{z} - \left\langle \nu^{*} , Y_{z \bar{z}} \right\rangle \\ &= -\frac{ H_{\nu^{*}} e^{2 \mathcal{L} } }{2 \langle \nu , \nu^{*} \rangle } \langle \nu , \nu^{*} \rangle \\ &= - \frac{ H_{\nu^{*}} e^{2 \mathcal{L} }}{2}, \end{array} $$
(111)
$$ \langle \nu^{*}_{z} \nu^{*} \rangle = 0, $$
(112)
$$ \nu^{*}_{z}= - \left\langle \nu^{*}_{z}, \nu \right\rangle \nu^{*} - H_{\nu^{*}} Y_{z} - {\Omega}_{\nu^{*}} e^{-2 \mathcal{L} } Y_{\bar{z}}. $$
(113)

Then

$$ \begin{array}{llll} \left\langle \nu_{z}, \nu_{z} \right\rangle &= H_{\nu} {\Omega}_{\nu} \\ \left\langle \nu^{*}_{z}, \nu^{*}_{z} \right\rangle &= H_{\nu^{*}} {\Omega}_{\nu^{*}}. \end{array} $$
(114)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marque, N. Conformal Gauss Map Geometry and Application to Willmore Surfaces in Model Spaces. Potential Anal 54, 227–271 (2021). https://doi.org/10.1007/s11118-020-09825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09825-9

Keywords

Mathematics Subject Classification (2010)

Navigation