Skip to main content
Log in

Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the homoclinic loop of the reduced systems or from a family of periodic orbits of the layer systems. For the persistence of homoclinic and heteroclinic orbits, and the limit cycles bifurcating from a homolinic loop of the reduced systems, we provide a new and readily detectable method to characterize them comparing with the usual Melnikov method when the reduced system forms a generalized rotated vector field. To determine the limit cycles bifurcating from the families of periodic orbits of the layer systems, we apply the averaging methods. We also provide two four-dimensional singularly perturbed differential systems, which have either heteroclinic or homoclinic orbits located on the slow manifolds and also three limit cycles bifurcating from the periodic orbits of the layer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov A A, Leontovich E A. Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle-node type. Mat Sb, 1959, 48: 335–376; English translation, Amer Math Soc Transl Ser 2, 1963, 33: 189–231

    MathSciNet  MATH  Google Scholar 

  2. Aronson D, Weinberger H. Nonlinear diffusion in population genetics, combustion and nerve propagation. In: Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, vol. 446. New York: Springer-Verlag, 1975, 5–49

    Article  MathSciNet  MATH  Google Scholar 

  3. Barreira L, Llibre J, Valls C. Periodic orbits near equilibria. Comm Pure Appl Math, 2010, 63: 1225–1236

    MathSciNet  MATH  Google Scholar 

  4. Buică A, Llibre J. Averaging methods for finding periodic orbits via Brouwer degree. Bull Sci Math, 2004, 128: 7–22

    Article  MathSciNet  MATH  Google Scholar 

  5. Buică A, Llibre J, Makarenkov O. Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems. J Differential Equations, 2012, 252: 3899–3919

    Article  MathSciNet  MATH  Google Scholar 

  6. Desroches M, Guillamon T, Ponce E, et al. Canards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Rev, 2016, 58: 653–691

    Article  MathSciNet  MATH  Google Scholar 

  7. Duff G F D. Limit-cycles and rotated vector fields. Ann of Math (2), 1953, 67: 15–31

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumortier F, Roussarie R. Canard Cycles and Center Manifolds. Memoirs of the American Mathematical Society, vol. 121. Providence: Amer Math Soc, 1996

  9. Fan H, Lin X-B. Standing waves for phase transitions in a spherically symmetric nozzle. SIAM J Math Anal, 2012, 44: 405–436

    Article  MathSciNet  MATH  Google Scholar 

  10. Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J, 1971, 21: 193–226

    Article  MathSciNet  MATH  Google Scholar 

  11. Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J Differential Equations, 1979, 31: 53–98

    Article  MathSciNet  MATH  Google Scholar 

  12. Gardner R A, Jones C K R T. Travelling waves of a perturbed diffusion equation arising in a phase field model. Indiana Univ Math J, 1989, 38: 1197–1222

    MATH  Google Scholar 

  13. Giné J, Llibre J, Wu K, et al. Averaging methods of arbitrary order, periodic solutions and integrability. J Differential Equations, 2016, 260: 4130–4156

    Article  MathSciNet  MATH  Google Scholar 

  14. Guckenheimer G, Holmes H. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  15. Ji S, Liu W, Zhang M. Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck models. SIAM J Appl Math, 2016, 75: 114–135

    Article  MathSciNet  MATH  Google Scholar 

  16. Jones C K R T. Geometric singular perturbation theory. In: Dynamical Systems. Lecture Notes in Mathematics, vol. 1609. Berlin-Heidelberg: Springer, 2006, 44–118

    Article  MathSciNet  MATH  Google Scholar 

  17. Jost J. Dynamical Systems. Berlin: Springer-Verlag, 2005

    MATH  Google Scholar 

  18. Li M Y, Liu W, Shan C, et al. Turning points and relaxation cycles in simple epidemic models. SIAM J Appl Math, 2016, 76: 663–687

    Article  MathSciNet  MATH  Google Scholar 

  19. Llibre J, Novaes D D. Improving the averaging theory for computing periodic solutions of the differential equations. Z Angew Math Phys, 2015, 66: 1401–1412

    Article  MathSciNet  MATH  Google Scholar 

  20. Llibre J, Novaes D D, Teixeira M A. Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity, 2014, 27: 563–583

    Article  MathSciNet  MATH  Google Scholar 

  21. Llibre J, Novaes D D, Teixeira M A. Corrigendum: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity, 2014, 27: 2417

    Article  MathSciNet  MATH  Google Scholar 

  22. Llibre J, Pantazi C. Limit cycles bifurcating from a degenerate center. Math Comput Simulation, 2016, 120: 1–11

    Article  MathSciNet  Google Scholar 

  23. Llibre J, Valls C. Hopf bifurcation for some analytic differential systems in R3 via averaging theory. Discrete Contin Dyn Syst, 2011, 30: 779–790

    Article  MathSciNet  MATH  Google Scholar 

  24. Llibre J, Valls C. Hopf bifurcation of a generalized Moon-Rand system. Commun Nonlinear Sci Numer Simul, 2015, 20: 1070–1077

    Article  MathSciNet  MATH  Google Scholar 

  25. Llibre J, Zhang X. Hopf bifurcation in higher dimensional differential systems via the averaging method. Pacific J Math, 2009, 240: 321–341

    Article  MathSciNet  MATH  Google Scholar 

  26. Llibre J, Zhang X. On the Hopf-zero bifurcation of the Michelson system. Nonlinear Anal Real World Appl, 2011, 12: 1650–1653

    Article  MathSciNet  MATH  Google Scholar 

  27. Pi D, Zhang X. Limit cycles of differential systems via the averaging methods. Can Appl Math Q, 2009, 17: 243–269

    MathSciNet  MATH  Google Scholar 

  28. Prohens R, Teruel A E, Vich C. Slow-fast n-dimensional piecewise linear differential systems. J Differential Equations, 2016, 260: 1865–1892

    Article  MathSciNet  MATH  Google Scholar 

  29. Shafaravich I R. Basic Algebraic Geometry. New York: Springer-Verlag, 1974

    Book  Google Scholar 

  30. Szmolyan P. Analysis of a singularly perturbed travelling wave problem. SIAM J Appl Math, 1992, 52: 485–493

    Article  MathSciNet  MATH  Google Scholar 

  31. Verhulst F. Nonlinear Differential Equations and Dynamical Systems. Berlin: Springer-Verlag, 1996

    Book  MATH  Google Scholar 

  32. Ye Y Q, Cai S L, Chen L S, et al. Theory of Limit Cycles, 2nd ed. Translations of Mathematical Monographs, vol. 66. Providence: Amer Math Soc, 1986

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11671254) and Innovation Program of Shanghai Municipal Education Commission (Grant No. 15ZZ012). The author sincerely appreciates the referees for their nice comments and suggestions, which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems. Sci. China Math. 62, 1687–1704 (2019). https://doi.org/10.1007/s11425-017-9223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9223-6

Keywords

MSC(2010)

Navigation