Skip to main content
Log in

An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional. For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahn J W, Hilliard J E. Free energy of a nonuniform system, I: Interfacial free energy. J Chem Phys, 1958, 28: 258–267

    Article  Google Scholar 

  2. Cao H Y, Sun Z Z. Two finite difference schemes for the phase field crystal equation. Sci China Math, 2015, 58: 2435–2454

    Article  MathSciNet  MATH  Google Scholar 

  3. Chakrabarti A, Toral R, Gunton J D, et al. Dynamics of phase separation in a binary polymer blend of critical composition. J Chem Phys, 1990, 92: 6899–6909

    Article  Google Scholar 

  4. Chen W B, Conde S, Wang C, et al. A linear energy stable scheme for a thin film model without slope selection. J Sci Comput, 2012, 52: 546–562

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen W B, Wang C, Wang X M, et al. A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J Sci Comput, 2014, 59: 574–601

    Article  MathSciNet  MATH  Google Scholar 

  6. Chin J, Coveney P V. Lattice Boltzmann study of spinodal decomposition in two dimensions. Phys Rev E, 2002, 66: 016303-1–016303-8

  7. Copetti M I M, Elliott C M. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer Math, 1992, 63: 39–65

    Article  MathSciNet  MATH  Google Scholar 

  8. de Gennes P G. Dynamics of fluctuations and spinodal decomposition in polymer blends. J Chem Phys, 1980, 72: 4756–4763

    Article  MathSciNet  MATH  Google Scholar 

  9. Eyre D J. An unconditionally stable one-step scheme for gradient systems. Http://www.math.utah.edu/~eyre/ research/methods/stable.ps

  10. Eyre D J. Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard J W, Kalia R, Stoneham M, et al., eds. Computational and Mathematical Models of Microstructural Evolution. Mater Res Soc Symp Proc, vol. 529. Warrendale: Materials Research Society, 1998, 39–46

    Google Scholar 

  11. Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953

    Google Scholar 

  12. Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliard equation. Numer Math, 2001, 87: 675–699

    Article  MathSciNet  MATH  Google Scholar 

  13. Furihata D, Matsuo T. A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation. Japan J Indust Appl Math, 2003, 20: 65–85

    Article  MathSciNet  MATH  Google Scholar 

  14. Glotzer S C, Paul W. Molecular and mesoscale simulation methods for polymer materials. Annu Rev Mater Res, 2002, 32: 401–436

    Article  Google Scholar 

  15. He Y N, Liu Y X, Tang T. On large time-stepping methods for the Cahn-Hilliard equation. Appl Numer Math, 2007, 57: 616–628

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang J Y. Numerical study of the growth kinetics for TDGL equations. Master’s Degree Thesis. Ontario: The University of Western Ontario, 1998

    Google Scholar 

  17. Huang T, Xu H G, Jiao K X, et al. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel. Adv Mater, 2007, 19: 1622–1626

    Article  Google Scholar 

  18. Ibañes M, García-Ojalvo J, Toral R, et al. Noise-induced phase separation: Mean-field results. Phys Rev E, 1999, 60: 3597–3605

    Article  Google Scholar 

  19. Kawakatsu T. Computer simulation of self-assembling processes of a binary mixture containing a block copolymer. Phys Rev E, 1994, 50: 2856–2862

    Article  Google Scholar 

  20. Li J, Sun Z Z, Zhao X. A three level linearized compact difference scheme for the Cahn-Hilliard equation. Sci China Math, 2012, 55: 805–826

    Article  MathSciNet  MATH  Google Scholar 

  21. Li X, Ji G H, Zhang H. Phase transitions of macromolecular microsphere composite hydrogels based on stochastic Cahn-Hilliard equation. J Comput Phys, 2015, 283: 81–97

    Article  MathSciNet  Google Scholar 

  22. Liu C, Shen J, Yang X F. Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J Sci Comput, 2015, 62: 601–622

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu C H. Stochastic Process, 4th ed. Wuhan: Huazhong University of Science and Technology Press, 2008

    Google Scholar 

  24. Nocedal J, Wright S J. Numerical Optimization. New York: Springer-Verlag, 1999

    Book  MATH  Google Scholar 

  25. Qiao Z H, Sun S Y. Two-phase fluid simulation using a diffuse interface model with Peng-Robinson equation of state. SIAM J Sci Comput, 2014, 36: B708–B728

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiao Z H, Sun Z Z, Zhang Z R. Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math Comp, 2015, 84: 653–674

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiao Z H, Tang T, Xie H H. Error analysis of a mixed finite element method for the molecular beam epitaxy model. SIAM J Numer Anal, 2015, 53: 184–205

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiao Z H, Zhang Z R, Tang T. An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J Sci Comput, 2011, 33: 1395–1414

    Article  MathSciNet  MATH  Google Scholar 

  29. Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput, 1986, 7: 856–869

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen J, Wang C, Wang X M, et al. Second-order convex splitting schemes for gradient flows with Enhrich-Schwoebel type energy: Application to thin film epitaxy. SIAM J Numer Anal, 2012, 50: 105–125

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun Z Z. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math Comp, 1995, 64: 1463–1471

    MathSciNet  MATH  Google Scholar 

  32. Wang C, Wang X M, Wise S M. Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin Dyn Syst, 2010, 28: 405–423

    Article  MathSciNet  MATH  Google Scholar 

  33. Wise S M. Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J Sci Comput, 2010, 44: 38–68

    Article  MathSciNet  MATH  Google Scholar 

  34. Wise S M, Wang C, Lowengrub J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J Numer Anal, 2009, 47: 2269–2288

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu C J, Tang T. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J Numer Anal, 2006, 44: 1759–1779

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhai D, Zhang H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel. Soft Matter, 2013, 9: 820–825

    Article  MathSciNet  Google Scholar 

  37. Zhang S, Wang M. A nonconforming finite element method for the Cahn-Hilliard equation. J Comput Phys, 2010, 229: 7361–7372

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang W, Li T J, Zhang PW. Numerical study for the nucleation of one-dimensional stochastic Cahn-Hilliard dynamics. Commun Math Sci, 2012, 10: 1105–1132

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang Z R, Ma Y, Qiao Z H. An adaptive time-stepping strategy for solving the phase field crystal model. J Comput Phys, 2013, 249: 204–215

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongHua Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qiao, Z. & Zhang, H. An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation. Sci. China Math. 59, 1815–1834 (2016). https://doi.org/10.1007/s11425-016-5137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5137-2

Keywords

MSC(2010)

Navigation