Skip to main content
Log in

A Large Time-Stepping Mixed Finite Method of the Modified Cahn–Hilliard Equation

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to solve the modified Cahn–Hilliard equation via a large time-stepping mixed finite-element method to ease the time-stepping limit caused by small parameters and nonlinear terms. The modified Cahn–Hilliard equation is discretized by mixed finite-element method in space and first-order semi-implicit scheme in time. The energy stability and error analysis of the fully discrete semi-implicit scheme are proved. Finally, a series of numerical experiments are presented to verify the conclusion of theoretical part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elliott, C.M., Zheng, S.: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)

    Article  MathSciNet  Google Scholar 

  2. Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (editor) Mathematical models for phase change problems: proceedings of the European workshop held at Óbidos, Portugal, October 1–3, 1988. International Series of Numerical Mathematics, 35–73. Berlin, Birkhäuser Verlag (1989)

  3. Bai, F., Elliott, C.M., Gardiner, A., Spence, A., Stuart, A.M.: The viscous Cahn–Hilliard equation. Part I: Computations. Nonlinearity 8, 131–160 (1995)

    Article  MathSciNet  Google Scholar 

  4. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19, 2621–2632 (1986)

    Article  Google Scholar 

  5. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discr. Contin. Dyn. Syst. Ser. A (DCDS-A) 28(4), 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  6. Hu, Z., Wise, S.M., Wang, C., et al.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228(15), 5323–5339 (2009)

    Article  MathSciNet  Google Scholar 

  7. He, L.P., Liu, Y.: A class of stable spectral methods for the Cahn–Hilliard equation. J. Comput. Phys. 228(14), 5101–5110 (2009)

    Article  MathSciNet  Google Scholar 

  8. Xia, Y., Xu, Y., Shu, C.W.: Local Discontinuous Galerkin Methods for the Cahn–Hilliard Type Equations. Academic Press Professional, Inc., Beijing (2007)

    Book  Google Scholar 

  9. Zhang, S., Wang, M.: A Nonconforming Finite Element Method for the Cahn–Hilliard Equation. Academic Press Professional, Inc., Beijing (2010)

    Book  Google Scholar 

  10. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    Article  MathSciNet  Google Scholar 

  11. Shahriari, B.: The modified Cahn–Hilliard equation on general surfaces. Science 324(5932), 1293–8 (2010)

    Google Scholar 

  12. Lee, S., Choi, Y., Lee, D., et al.: A modified Cahn–Hilliard equation for 3D volume reconstruction from two planar cross sections. J. Korean Soc. Ind. Appl. Math. 19(1), 47–56 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Gillette, A.: Image inpainting using a modified Cahn–Hilliard equation (2006)

  14. Choi, Y., Jeong, D., Kim, J.: Curve and surface smoothing using a modified Cahn-Hilliard equation. Math. Probl. Eng. 2017(3–4), 1–9 (2017)

    Article  MathSciNet  Google Scholar 

  15. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems (1997)

  16. Chen, L.Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108(2–3), 147–158 (1998)

    Article  Google Scholar 

  17. Yang, Y., Feng, X., He, Y.: Large time-stepping method based on the finite element discretization for the Cahn–Hilliard equation. J. Appl. Math. Inform 29(5–6), 1129–1141 (2011)

    MathSciNet  MATH  Google Scholar 

  18. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  19. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

  20. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy Models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Chen, W., Wang, C., et al.: Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system. Numer. Math. 135(3), 679–709 (2017)

    Article  MathSciNet  Google Scholar 

  22. Aristotelous, A.C., Karakshian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discr. Contain. Dyn A 18, 2211–2238 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Rebholz, L.G.: An energy- and helicity-conserving finite element scheme for the Navier–Stokes equations. SIAM J. Numer. Anal. 45(4), 1622–1638 (2007)

    Article  MathSciNet  Google Scholar 

  24. Mu, M., Zhu, X.H.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79(270), 707–31 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongen Jia.

Additional information

Communicated by Davod Khojasteh Salkuyeh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Nature Foundation of China (No. 11872264), the Provincial Natural Science Foundation of Shanxi (No. 201901D111123), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017119), Key Research and Development (R&D) Projects of Shanxi Province (No. 201903D121038).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Hu, H. & Meng, L. A Large Time-Stepping Mixed Finite Method of the Modified Cahn–Hilliard Equation. Bull. Iran. Math. Soc. 46, 1551–1569 (2020). https://doi.org/10.1007/s41980-019-00342-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-019-00342-z

Keywords

Mathematics Subject Classification

Navigation