Skip to main content
Log in

Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We prove the convergence of an adaptive mixed finite element method (AMFEM) for (nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not present in convection- or reaction-dominated problems. A novel technique of analysis is developed by using the superconvergence of the scalar displacement variable instead of the quasi-orthogonality for the stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: John Wiley & Sons, 2000

    Book  MATH  Google Scholar 

  2. Arnold D N, Brezzi F. Mixed and nonconforming finite element methods: Implimentation, postprocessing and errror estimates. Math Model Numer Anal, 1985, 19: 7–32

    MATH  MathSciNet  Google Scholar 

  3. Arnold D N, Falk R S, Winther R. Finite element exterior calculus, homological techniques, and applications. Acta Numer, 2006, 1–155

    Google Scholar 

  4. Babuška I, Rheinboldt W. A-posteriori error estimates for the finite element method. Internat J Numer Methods Engrg, 1978, 12: 1597–1615

    Article  MATH  Google Scholar 

  5. Babuška I, Rheinboldt W. Error estimates for adaptive finite element computations. SIAM J Numer Anal, 1978, 15: 736–754

    Article  MATH  MathSciNet  Google Scholar 

  6. Babuška I, Strouboulis T. The Finite Element Method and Its Reliability. Oxford: Clarendon Press, 2001

    Google Scholar 

  7. Becker R, Mao S P. An optimally convergent adaptive mixed finite element method. Numer Math, 2008, 111: 35–54

    Article  MATH  MathSciNet  Google Scholar 

  8. Brandts J. Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer Math, 1994, 68: 311–324

    Article  MATH  MathSciNet  Google Scholar 

  9. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991

    Book  MATH  Google Scholar 

  10. Carstensen C. A posteriori error estimate for the mixed finite element method. Math Comp, 1977, 66: 465–476

    Article  MathSciNet  Google Scholar 

  11. Carstensen C, Hoppe R H W. Error reduction and convergence for an adaptive mixed finite element method. Math Comp, 2006, 75: 1033–1042

    Article  MATH  MathSciNet  Google Scholar 

  12. Carstensen C, Hu J. A unifying theory of a posteriori error control for nonconforming finite element methods. Numer Math, 2007, 107: 473–502

    Article  MATH  MathSciNet  Google Scholar 

  13. Carstensen C, Hu J, Orlando A. Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J Numer Anal, 2007, 45: 68–82

    Article  MATH  MathSciNet  Google Scholar 

  14. Carstensen C, Rabus H. An optimal adaptive mixed finite element method. Math Comp, 2011, 80: 649–667

    Article  MATH  MathSciNet  Google Scholar 

  15. Cascon J M, Kreuzer C, Nochetto R H, et al. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal, 2008, 46: 2524–2550

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen L, Holst M, Xu J C. Convergence and optimality of adaptive mixed finite element methods. Math Comp, 2009, 78: 35–53

    Article  MATH  MathSciNet  Google Scholar 

  17. Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam-New York-Oxford: Nort-Holland, 1978

    MATH  Google Scholar 

  18. Demlow A, Stevenson R. Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors. Numer Math, 2011, 117: 185–218

    Article  MATH  MathSciNet  Google Scholar 

  19. Dörfler W. A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal, 1996, 33: 1106–1124

    Article  MATH  MathSciNet  Google Scholar 

  20. Douglas J R, Roberts J E. Global estimates for mixed methods for second order elliptic equations. Math Comp, 1985, 44: 39–52

    Article  MATH  MathSciNet  Google Scholar 

  21. Du S H. A new residual posteriori error estimates of mixed finite element methods for convection-diffusion-reaction equations. Numer Methods Partial Differential Equations, 2014, 30: 593–624

    Article  MATH  MathSciNet  Google Scholar 

  22. Du S H, Xie X P. Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms. Sci China Ser A, 2008, 51: 1440–1460

    Article  MATH  MathSciNet  Google Scholar 

  23. Du S H, Xie X P. Error reduction, convergence and optimality of an adaptive mixed finite element method. J Syst Sci Complex, 2012, 25: 195–208

    Article  MATH  MathSciNet  Google Scholar 

  24. Du S H, Xie X P. Error reduction, convergence and optimality for adaptive mixed finite element methods for diffusion equations. J Comput Math, 2012, 30: 483–503

    Article  MATH  MathSciNet  Google Scholar 

  25. Du S H, Xie X P. On residual-based a posteriori error estimators for lowest-order Raviart-Thomas element approximation to convection-diffusion-reaction equations. J Comput Math, 2014, 32: 522–546

    Article  MathSciNet  Google Scholar 

  26. Eigestad G T, Klausen R A. On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability. Numer Methods Partial Differential Equations, 2005, 21: 1079–1098

    Article  MATH  MathSciNet  Google Scholar 

  27. Hiptmair R. Canonical construction of finite elements. Math Comp, 1999, 68: 1325–1346

    Article  MATH  MathSciNet  Google Scholar 

  28. Hu J, Shi Z C, Xu J C. Convergence and optimality of the adaptive Morley element method. Numer Math, 2012, 121: 731–752

    Article  MATH  MathSciNet  Google Scholar 

  29. Jia S H, Chen H T, Xie H H. A posteriori error estimator for eigenvalue problems by mixed finite element method. Sci China Math, 2013, 56: 887–900

    Article  MATH  MathSciNet  Google Scholar 

  30. Mekchay K, Nochetto R H. Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J Numer Anal, 2005, 43: 1803–1827

    Article  MATH  MathSciNet  Google Scholar 

  31. Mitchell W F. A comparison of adaptive refinement techniques for elliptic problems. ACM Trans Math Software, 1989, 15: 326–347

    Article  MATH  MathSciNet  Google Scholar 

  32. Mitchell W F. Optimal multilevel iterative methods for adaptive grids. SIAM J Sci Comput, 1992, 13: 146–167

    Article  MATH  Google Scholar 

  33. Morin P, Nochetto R H, Siebert K G. Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal, 2000, 38: 466–488

    Article  MATH  MathSciNet  Google Scholar 

  34. Morin P, Nochetto R H, Siebert K G. Convergence of adaptive finite element methods. SIAM Rev, 2002, 44: 631–658

    Article  MATH  MathSciNet  Google Scholar 

  35. Morin P, Nochetto R H, Siebert K G. Local problems on stars: A posteriori error estimators, convergence, and performance. Math Comp, 2003, 72: 1067–1097

    Article  MATH  MathSciNet  Google Scholar 

  36. Raviart P A, Thomas J M. A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606. Berlin: Springer, 1977, 292–315

    Chapter  Google Scholar 

  37. Rivara M C. Mesh refinement processes based on the generalized bisection of simplices. SIAM J Numer Anal, 1984, 21: 604–613

    Article  MATH  MathSciNet  Google Scholar 

  38. Rivara M C. Design and data structure for fully adaptive, multigrid finite-element software. ACM Trans Math Software, 1984, 10: 242–264

    Article  MATH  MathSciNet  Google Scholar 

  39. Rivière B, Wheeler M F. A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Log number: R74. Comput Math Appl, 2003, 46: 141–163

    Article  MATH  MathSciNet  Google Scholar 

  40. Sewell E G. Automatic generation of triangulations for piecewise polynomial approximation. PhD dissertation, Purdue University, 1972

    Google Scholar 

  41. Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Chichester-New York: Wiley-Teubner, 1996

    MATH  Google Scholar 

  42. Vohralík M. A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusionreaction equations. SIAM J Numer Anal, 2007, 45: 1570–1599

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang Y D, Bi H. Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems. Sci China Math, 2014, 57: 1319–1329

    Article  MATH  MathSciNet  Google Scholar 

  44. Yang Y D, Jiang W. Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the Stokes eigenvalue problem. Sci China Math, 2013, 56: 1313–1330

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Xie, X. Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations. Sci. China Math. 58, 1327–1348 (2015). https://doi.org/10.1007/s11425-015-4992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-4992-6

Keywords

MSC(2010)

Navigation