Skip to main content
Log in

A proximal alternating linearization method for minimizing the sum of two convex functions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a novel alternating linearization method for solving convex minimization whose objective function is the sum of two separable functions. The motivation of the paper is to extend the recent work Goldfarb et al. (2013) to cope with more generic convex minimization. For the proposed method, both the separable objective functions and the auxiliary penalty terms are linearized. Provided that the separable objective functions belong to C 1,1(ℝn), we prove the O(1/) arithmetical complexity of the new method. Some preliminary numerical simulations involving image processing and compressive sensing are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attouch H, Bolte J. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math Program, 2009, 116: 5–16

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch H, Czarnecki M-O, Peypouquet J. Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM J Optim, 2011, 21: 1251–1274

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci, 2009, 2: 183–202

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas D P. Convex Analysis and Optimization. Nashua, NH: Athena Scientific, 2003

    MATH  Google Scholar 

  5. Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3: 1–122

    Article  Google Scholar 

  6. Candès E J, Recht B. Exact matrix completion via convex optimization. Found Comput Math, 2009, 9: 717–772

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang T H, Hong M Y, Wang X F. Multi-agent distributed optimization via inexact consensus ADMM. ArXiv: 1402.6065, 2014

    Google Scholar 

  8. Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems. Math Program, 1994, 64: 81–101

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1998, 20: 33–61

    Article  MathSciNet  Google Scholar 

  10. Eckstein J. Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results. RUTCOR Research Report, 2012, 34 pages

    Google Scholar 

  11. Figueiredo M A T, Nowak R D. An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process, 2003, 12: 906–916

    Article  MathSciNet  MATH  Google Scholar 

  12. Fukushima M. Application of the alternating direction method of multipliers to separable convex programming problems. Comput Optim Appl, 1992, 1: 93–111

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput Math Appl, 1976, 2: 17–40

    Article  MATH  Google Scholar 

  14. Glowinski R. On alternating directon methods of multipliers: A historical perspective. In: Modeling, Simulation and Optimization for Science and Technology. Dordrecht: Springer, 2014, 59–82

    Google Scholar 

  15. Glowinski R, Marroco A. Sur l’approximation, paréléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. ESAIM Math Model Numer Anal, 1975, 9: 41–76

    MATH  Google Scholar 

  16. Goldfarb D, Ma S Q, Scheinberg K. Fast alternating linearization methods for minimizing the sum of two convex functions. Math Program, 2013, 141: 349–382

    Article  MathSciNet  MATH  Google Scholar 

  17. Golub G H, Van Loan C F. Matrix Computations. Baltimore: Johns Hopkins University Press, 1996

    MATH  Google Scholar 

  18. Han D R, He H J, Yang H, et al. A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints. Numer Math, 2014, 127: 167–200

    Article  MathSciNet  MATH  Google Scholar 

  19. Han D R, Yuan X M, Zhang W X. An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing. Math Comp, 2014, 83: 2263–2291

    Article  MathSciNet  MATH  Google Scholar 

  20. Hansen P, Nagy J, O’Leary D. Deblurring Images: Matrices, Spectra, and Filtering. Philadelphia: SIAM, 2006

    Book  Google Scholar 

  21. He B S, Liao L Z, Han D R, et al. A new inexact alternating directions method for monotone variational inequalities. Math Program, 2002, 92: 103–118

    Article  MathSciNet  MATH  Google Scholar 

  22. He B S, Tao M, Yuan X M. Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J Optim, 2012, 22: 313–340

    Article  MathSciNet  MATH  Google Scholar 

  23. He B S, Yuan X M. On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J Numer Anal, 2012, 50: 700–709

    Article  MathSciNet  MATH  Google Scholar 

  24. Hestenes M R. Multiplier and gradient methods. J Optim Theory Appl, 1969, 4: 303–320

    Article  MathSciNet  MATH  Google Scholar 

  25. Hong M Y, Luo Z Q. On the linear convergence of the alternating direction method of multipliers. ArXiv:1208.3922, 2012

    Google Scholar 

  26. Kiwiel K C, Rosa C H, Ruszczynski A. Proximal decomposition via alternating linearization. SIAM J Optim, 1999, 9: 668–689

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma S Q. Alternating proximal gradient method for convex minimization. http://www.optimization-online.org/DBHTML/2012/09/3608.html, 2012

    Google Scholar 

  28. Nesterov Y. Introductory Lectures on Convex Optimization: A Basic Course. New York: Springer, 2004

    Book  Google Scholar 

  29. Nesterov Y. Smooth minimization of non-smooth functions. Math Program, 2005, 103: 127–152

    Article  MathSciNet  MATH  Google Scholar 

  30. Powell M J D. A method for nonlinear constraints in minimization problems. In: Optimization. New York: Academic Press, 1969, 283–298

    Google Scholar 

  31. Recht B, Fazel M, Parrilo P. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev, 2010, 52: 471–501

    Article  MathSciNet  MATH  Google Scholar 

  32. Rockafellar R T. Convex Analysis. Princeton: Princeton University Press, 1970

    Book  MATH  Google Scholar 

  33. Rockafellar R T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math Oper Res, 1976, 1: 97–116

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao M, Yuan X M. Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J Optim, 2011, 21: 57–81

    Article  MathSciNet  MATH  Google Scholar 

  35. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol, 1996, 58: 267–288

    MathSciNet  MATH  Google Scholar 

  36. Tseng P. Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming. Math Program, 1990, 48: 249–263

    Article  MATH  Google Scholar 

  37. Wang X F, Yuan X M. The linearized alternating direction method of multipliers for Dantzig selector. SIAM J Sci Comput, 34: 2792–2811

  38. Yang J F, Zhang Y. Alternating direction algorithms for l1-problems in compressive sensing. SIAM J Sci Comput, 2011, 33: 250–278

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan X M. Alternating direction method for covariance selection models. J Sci Comput, 2012, 51: 261–273

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenXing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Cai, X. & Jia, Z. A proximal alternating linearization method for minimizing the sum of two convex functions. Sci. China Math. 58, 1–20 (2015). https://doi.org/10.1007/s11425-015-4986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-4986-4

Keywords

MSC(2010)

Navigation