Skip to main content
Log in

Grunwald-Wang theorem, an effective version

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The main purpose of this article is to establish an effective version of the Grunwald-Wang theorem, which asserts that given a family of local characters χ v of K v * of exponent m, where v ¼ S for a finite set S of primes of K, there exists a global character χ of the idele class group C K of exponent m (unless some special case occurs, when it is 2m) whose local component at v is χ v. The effectiveness problem for this theorem is to bound the norm N(χ) of the conductor of χ in terms of K, m, S and Nv) (vS). The Kummer case (when K contains μ m ) is easy since it is almost an application of the Chinese remainder theorem. In this paper, we solve this problem completely in general case, and give three versions of bound, one is with GRH, and the other two are unconditional bounds. These effective results have some interesting applications in concrete situations. To give a simple example, if we fix p and l, one gets a good least upper bound for N such that p is not an l-th power mod N. One also gets the least upper bound for N such that l r | φ(N) and p is not an l-th power mod N. Some part of this article is adopted (with some revision) from the unpublished thesis by Wang (2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin E, Tate J. Class Field Theory. New York: W A Benjamin, 1967

    Google Scholar 

  2. Brumley F. Effective multiplicity one on GL(N) and narrow zero-free regions for Rankin-Selberg L-functions. Amer J Math, 2006, 128: 1455–1474

    Article  MathSciNet  Google Scholar 

  3. Cassells J, Froliche A. Algebraic Number Theory. New York: Academic Press Inc, 1967

    Google Scholar 

  4. Friedlander J B. On the least k-th power non-residue in an algebraic number field. Proc London Math Soc, 1973, 26: 19–34

    Article  MathSciNet  Google Scholar 

  5. Grunwald W. Ein Allgemeines Existenztheorem für algebraicshe Zahlk¨orper. J Reine Angew Math, 1933, 169: 103–107

    MathSciNet  Google Scholar 

  6. Hoffstein J, Ramakrishnan D. Siegel Zeros and Cusp Forms. IMRN, 1995, 6: 279–308

    Article  MathSciNet  MATH  Google Scholar 

  7. Murty V K. The least prime which does not split completely. Forum Math, 1994, 6: 555–565

    Article  MathSciNet  MATH  Google Scholar 

  8. Landau E. Algebraische Zahlen. Providence, RI: Amer Math Soc, 1949

    Google Scholar 

  9. Lagarias J C, Odlyzko A M. Effective Version of the Chebotarev Density Theorem. In: Frölich A, ed. Algebraic Number Fields, L-functions and Galois Properties. Proc Sympos Univer Durham. London: Academic Press, 1977, 409–464

    Google Scholar 

  10. Lagarias J C, Montgomery H L, Odlyzko A M. A bound for the least prime ideal in the Chebotarev density theorem. Inventiones Math, 1979, 54: 271–196

    Article  MathSciNet  MATH  Google Scholar 

  11. Lang S. Algebraic Number Theory. New York: Springer-Verlag, 1970

    Google Scholar 

  12. Lang S. Algebra. New York: Springer, 2002

    Book  MATH  Google Scholar 

  13. Liu J, Wang Y H. A theorem on analytic strong multiplicity one. J Number Theory, 2009, 129: 1874–1882

    Article  MathSciNet  Google Scholar 

  14. Moreno C J. Analytic Proof of the strong multiplcity one. Amer J Math, 1985, 107: 163–206

    Article  MathSciNet  MATH  Google Scholar 

  15. Neukirch J. Class Field Theory. New York: Springer-Verlag, 1970

    Google Scholar 

  16. Neukirch J. Algebraic Number Theory. New York: Springer, 1991

    Google Scholar 

  17. Odlyzko A M. On conductors and discriminants. In: Frölich A, ed. Algebraic Number Fields, L-functions and Galois Properties. Proc Sympos Univer Durham. London: Academic Press, 1977, 377–407

    Google Scholar 

  18. Ramakrishnan D, Valenza R J. Fourier Analysis on Number Fields. New York: Springer, 1999

    Book  Google Scholar 

  19. Ramakrishnan D, Wang S. On the exceptional zeros of Rankin-Selberg L-functions. Compos Math, 2003, 135: 211–244

    Article  MathSciNet  MATH  Google Scholar 

  20. Serre J-P. Quelques applications du théorème de densit´e de Chebotarev. Publ Math IHES, 1981, 54: 123–201

    Article  MATH  Google Scholar 

  21. Serre J-P. OE UVRES Collected Papers. Berlin: Springer-Verlag, 2001

    MATH  Google Scholar 

  22. Stark H. Some effective cases of the Brauer-Siegel theorem. Invent Math, 1974, 23: 135–162

    Article  MathSciNet  MATH  Google Scholar 

  23. Voloch J. Chebyshev’s method for number fields. J Théor Nombres Bordeaux, 2000, 12: 81–85

    Article  MathSciNet  Google Scholar 

  24. Vaaler J D, Voloch J. The Least Nonsplit Prime in Galois extensions of ℚ. J Number Theory, 2000, 85: 320–335

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang S. A counter example to Grunwald’s theorem. Ann of Math, 1948, 49: 1008–1009

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang S. On Grunwald’s theorem. Ann of Math, 1950, 51: 471–484

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang S. An effective version of the Grunwald-Wang theorem. PhD Thesis. ArXiv:1401.0389v1, 2014

    Google Scholar 

  28. Wang S. Multiplicity One, S-version. Sci China Math, 2015, 58: 233–256

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang Y H. The analytic strong multiplicity one theorem for GLm(AK). J Number Theory, 2008, 128: 1116–1126

    Article  MathSciNet  MATH  Google Scholar 

  30. Weil A. Sur les “formules explicites” de la théorie des nombres premiers. In: Comm Sem Math Lund. Phoenix: Tome Supplémentaire, 1952, 252–265

    Google Scholar 

  31. Weil A. Basic Number Theory. New York: Springer, 1973

    Book  Google Scholar 

  32. Whaples G. No-analytic class field theory and Gruenwald’s Theorem. Duke Math, 1942, 9: 455–473

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S. Grunwald-Wang theorem, an effective version. Sci. China Math. 58, 1589–1606 (2015). https://doi.org/10.1007/s11425-015-4977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-4977-5

Keywords

MSC(2010)

Navigation