Skip to main content
Log in

A new Ramanujan-type identity for \(L(2k+1, \chi _1)\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

One of the celebrated formulas of Ramanujan is about odd zeta values, which has been studied by many mathematicians over the years. A notable extension was given by Grosswald in 1972. Following Ramanujan’s idea, we rediscovered a Ramanujan-type identity for \(\zeta (2k+1)\) that was first established by Malurkar and later by Berndt using different techniques. In the current paper, we extend the aforementioned identity of Malurkar and Berndt to derive a new Ramanujan-type identity for \(L(2k+1, \chi _1)\), where \(\chi _1\) is the principal character modulo prime p. In the process, we encounter a new family of Ramanujan-type polynomials. Furthermore, we establish a character analogue of Grosswald’s identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apéry, R.: Irrationalité de \(\zeta {(2)}\) et \(\zeta (3)\). Astéerisque 61, 11–13 (1979)

    MATH  Google Scholar 

  2. Apéry, R.: Interpolation de fractions continues et irrationalité de certaines constantes. Bull. Section des Sci. 37–63 (1981)

  3. Ball, K., Rivoal, T.: Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs (French). Invent. Math. 146(1), 193–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banerjee, S., Kumar, R.: Explicit identities on zeta values over imaginary quadratic field, submitted for publication (2021). arXiv:2105.04141

  5. Berndt, B.C.: Character transformation formulae similar to those for the Dedekind eta-function. In: Analytic Number Theory, Proceedings of Symposia in Pure Mathematics, no. 24, pp. 9–30. American. Mathematical Society, Providence (1973)

  6. Berndt, B.C.: On Eisenstein series with characters and the values of Dirichlet \(L\)-functions. Acta Arith. 28, 299–320 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mountain J. Math. 7, 147–189 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berndt, B.C.: Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303(304), 332–365 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Berndt, B.C.: Ramanujan’s Notebooks. Part II. Springer, New York (1989)

    Book  MATH  Google Scholar 

  10. Berndt, B.C.: Ramanujan’s Notebooks. Part III. Springer, New York (1991)

    Book  MATH  Google Scholar 

  11. Berndt, B.C., Straub, A.: On a secant Dirichlet series and Eichler integrals of Eisenstein series. Math. Z. 284(3), 827–852 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berndt, B.C., Straub, A.: Ramanujan’s formula for \(\zeta (2n+1)\), exploring the Riemann zeta function, pp. 13–34. Springer, New York (2017)

  13. Bradley, D.M.: Series acceleration formulas for Dirichlet series with periodic coefficients. Ramanujan J. 6, 331–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chavan, P., Chavan, S., Vignat, C., Wakhare, T.: Dirichlet series under standard convolutions: variations on Ramanujan’s identity for odd zeta values. Ramanujan J. (2022). https://doi.org/10.1007/s11139-022-00624-x

  15. Chen, W.: On the polynomials with all their zeros on the unit circle. J. Math. Anal. Appl. 190(3), 714–724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen, H.: Number Theory Volume II: Analytic and Modern Tools. Springer, New York (2007)

  17. Dixit, A., Gupta, R.: Koshliakov zeta functions I: modular relations. Adv. Math. 393, 108093 (2021)

  18. Dixit, A., Maji, B.: Generalized Lambert series and arithmetic nature of odd zeta values. Proc. R. Soc. Edinb. Sect. A 150, 741–769 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dixit, A., Gupta, R., Kumar, R., Maji, B.: Generalized Lambert series, Raabe’s cosine transform and a generalization of Ramanujan’s formula for \(\zeta (2m+1)\). Nagoya Math. J. 239, 232–293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  21. Gupta, A., Maji, B.: On Ramanujan’s formula for \(\zeta (1/2)\) and \(\zeta (2m+1)\). J. Math. Anal. Appl. 507, 125738 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldstein, L.: Zeta functions and Eichler integrals. Acta Arith. 36, 229–256 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grosswald, E.: Remarks concerning the values of the Riemann zeta function at integral, odd arguments. J. Number Theory 4, 225–235 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gun, S., Murty, M.R., Rath, P.: Transcendental values of certain Eichler integrals. Bull. London Math. Soc. 43, 939–952 (2011). https://doi.org/10.1112/blms/bdr031

  25. Ivić, A.: The Riemann Zeta-Function. Dover, New York (1985)

    MATH  Google Scholar 

  26. Kanemitsu, S., Tanigawa, Y., Yoshimoto, M.: On the values of the Riemann zeta-function at rational arguments. Hardy-Ramanujan J. 24, 11–19 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Malurkar, S.L.: On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16, 130–138 (1925/26)

  28. Murty, R., Smyth, C., Wang, R.: Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26, 107–125 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Lalín, M., Rogers, M.: Variations of the Ramanujan polynomials and remarks on \(\zeta (2j+1)/\pi ^{2j+1}\). Funct Approx 48(1), 91–111 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Lalín, M., Rodrigue, F., Rogers, M.: Secant zeta functions. J. Math. Anal. Appl. 409, 197–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lakatos, P.: On zeros of reciprocal polynomials, C. R. Math. Rep. Acad. Sci. Canada 24, 91–96 (2002)

    MATH  Google Scholar 

  32. Lakatos, P., Losonczi, L.: Polynomials with all zeros on the unit circle. Acta Math. Hungar. 125(4), 341–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)

    MATH  Google Scholar 

  34. Ramanujan, S.: Collected Papers, Cambridge University Press, Cambridge, \(1927\); reprinted by Chelsea, New York, \(1962\); reprinted by the American Mathematical Society, Providence (2000)

  35. Ramanujan, S.: Notebooks of Srinivasa Ramanujan, vol. 1, 2nd edn. Tata Institute of Fundamental Research, Bombay (2012)

    MATH  Google Scholar 

  36. Ramanujan, S.: Notebooks of Srinivasa Ramanujan, vol. 2, 2nd edn. Tata Institute of Fundamental Research, Bombay (2012)

    MATH  Google Scholar 

  37. Rivoal, T.: La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. C. R. Acad. Sci. Paris Sér. I Math. 331(4), 267–270 (2000)

  38. Schinzel, A.: Self-inversive polynomials with all zeros on the unit circle. Ramanujan J. 9, 19–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sitaramchandrarao, R.: Ramanujan’s formula for \(\zeta (2n+1)\). Madurai Kamaraj Univ. Tech. Rep. 4, 70–117 (1997)

    MathSciNet  Google Scholar 

  40. Straub, A.: Special values of trigonometric Dirichlet series and Eichler integrals. Ramanujan J. 41, 269–285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zudilin, W.W.: One of the numbers \(\zeta (5), \zeta (7), \zeta (9)\) and \(\zeta (11)\) is irrational (Russian), Uspekhi Mat. Nauk 56(4), 149–150 (2001); translation in Russian Math. Surveys 56 (4), 774–776 (2001)

Download references

Acknowledgements

We sincerely thank the anonymous referee for carefully reading our manuscript and providing various corrections. The authors would also like to thank Prof. Bruce C. Berndt and Prof. Atul Dixit for giving valuable suggestions. We are also thankful to the Computational Number Theory (CNT) Lab, IIT Indore for providing conductive research environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibekananda Maji.

Additional information

Dedicated to Srinivasa Ramanujan on the 134th anniversary of his birth

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The third author thanks the SERB for the Start-Up Research Grant SRG/2020/000144.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chourasiya, S., Jamal, M.K. & Maji, B. A new Ramanujan-type identity for \(L(2k+1, \chi _1)\). Ramanujan J 60, 729–750 (2023). https://doi.org/10.1007/s11139-022-00661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00661-6

Keywords

Mathematics Subject Classification

Navigation