Skip to main content
Log in

Blowup mechanism for viscous compressible heat-conductive magnetohydrodynamic flows in three dimensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We investigate initial-boundary-value problem for three dimensional magnetohydrodynamic (MHD) system of compressible viscous heat-conductive flows and the three-dimensional full compressible Navier-Stokes equations. We establish a blowup criterion only in terms of the derivative of velocity field, similar to the Beale-Kato-Majda type criterion for compressible viscous barotropic flows by Huang et al. (2011). The results indicate that the nature of the blowup for compressible MHD models of viscous media is similar to the barotropic compressible Navier-Stokes equations and does not depend on further sophistication of the MHD model, in particular, it is independent of the temperature and magnetic field. It also reveals that the deformation tensor of the velocity field plays a more dominant role than the electromagnetic field and the temperature in regularity theory. Especially, the similar results also hold for compressible viscous heat-conductive Navier-Stokes flows, which extend the results established by Fan et al. (2010), and Huang and Li (2009). In addition, the viscous coefficients are only restricted by the physical conditions in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys, 1984, 94: 61–66

    Article  MathSciNet  MATH  Google Scholar 

  2. Cabannes H. Theoretical Magneto-Fluid Dynamics. New York: Academic Press, 1970

    Google Scholar 

  3. Chen M T, Liu Q S. Blow-up criterion for 3D viscous-resistive compressible magnetohydrodynamic equations. Math Methods Appl Sci, 2013, 36: 1145–1156

    Article  MathSciNet  MATH  Google Scholar 

  4. Du L L, Wang Y F. Blowup criterion for 3-dimensional compressible Navier-Stokes equations involving velocity divergence. Comm Math Sci, 2014, 12: 1427–1435

    Article  MathSciNet  Google Scholar 

  5. Fan J S, Jiang S, Nakamura G. Regularity criterion involving the pressure for the weak solutions to the Navier-Stokes equations. Comm Math Phys, 2007, 270: 691–708

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan J S, Jiang S, Ou Y B. A blow-up criterion for compressible viscous heatconductive flows. Ann L’Institut Henri Poincare C Anal Non Lineaire, 2010, 27: 337–350

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan J S, Yu W. Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal Real World Appl, 2009, 10: 392–409

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl E. Compressible Navier-Stokes equations with a non-monotone pressure law. J Differential Equations, 2002, 84: 97–108

    Article  MathSciNet  Google Scholar 

  9. Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press, 2004

    MATH  Google Scholar 

  10. Hasegawa A. Self-organization processes in continuous media. Adv Phys, 1985, 34: 1–42

    Article  Google Scholar 

  11. He C, Xin Z. On the regularity of weak solutions to the magnetohydrodynamics equations. J Differential Equations, 2005, 213: 235–254

    Article  MathSciNet  MATH  Google Scholar 

  12. He C, Xin Z. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamics equations. J Funct Anal, 2005, 227: 113–152

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu X P, Wang D H. Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Comm Math Phys, 2008, 283: 255–284

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu X P, Wang D H. Discontinuous solutions of the Navier-Stokes equation for multidimensional flows of heat-conducting fluids. Arch Ration Mech Anal, 2010, 197: 203–238

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang X D, Li J. On breakdown of solutions to the full compressible Navier-Stokes equations. Methods Appl Anal, 2009, 16: 479–490

    MathSciNet  MATH  Google Scholar 

  16. Huang X D, Li J. Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows. Comm Math Phys, 2013, 324: 147–171

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang X D, Li J, Wang Y. Serrin-type blowup criterion for full compressible Navier-Stokes system. Arch Rational Mech Anal, 2013, 207: 303–316

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang X D, Li J, Xin Z P. Serrin type criterion for the three-dimensional viscous compressible flows. SIAM J Math Anal, 2011, 43: 1872–1886

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang X D, Li J, Xin Z P. Blowup criterion for viscous barotropic flows with vacuum states. Comm Math Phys, 2011, 301: 23–35

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65: 549–585

    Article  MathSciNet  MATH  Google Scholar 

  21. Kawashima S. Smooth global solutions for two-dimensional equations of electromagneto-fluid dynamics. Japan J Appl Math, 1984, 1: 207–222

    Article  MathSciNet  MATH  Google Scholar 

  22. Kazhikhov V, Shelukhin V V. Unique global solution with respect to time of initial-boundary-value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 273–282

    Article  MathSciNet  Google Scholar 

  23. Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242: 251–278

    Article  MathSciNet  MATH  Google Scholar 

  24. Landau L D, Lifshitz E M. Electrodynamics of Continuous Media, 2nd ed. New York: Pergamon, 1984

    Google Scholar 

  25. Li H L, Xu X Y, Zhang J W. Global classical solutions to 3D compressible Magnetohydrodynamic equations with large oscillations and vacuum. SIAM J Math. Anal, 2013, 45: 1356–1358

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions P L. Mathematical Topics in Fluid Mechanics. Oxford: Clarendon Press, 1998

    MATH  Google Scholar 

  27. Liu S Q, Yu H B, Zhang J W. Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum. J Differential Equations, 2013, 254: 229–255

    Article  MathSciNet  MATH  Google Scholar 

  28. Lorrain P, Lorrain F, Houle S. Magneto-Fluid Dynamics. New York: Springer, 2006

    MATH  Google Scholar 

  29. Lu M, Du Y, Yao Z A. Blow-up criterion for compressible MHD equations. J Math Anal Appl, 2011, 379: 425–438

    Article  MathSciNet  MATH  Google Scholar 

  30. Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13: 115–162

    MathSciNet  MATH  Google Scholar 

  31. Politano H, Pouquet A, Sulem P L. Current and vorticity dynamics in three-dimensional magnetohydrodynamics turbulence. Phys Plasmas, 1995, 2: 2931–2939

    Article  MathSciNet  Google Scholar 

  32. Sart R. Existence of finite energy weak solutions for the equations MHD of compressible fluids. Appl Anal, 2009, 88: 357–379

    Article  MathSciNet  MATH  Google Scholar 

  33. Serrin J. On the interior regularity of weak solutions of Navier-Stokes equation. Arch Rational Mech Anal, 1962, 9: 187–195

    Article  MathSciNet  MATH  Google Scholar 

  34. Suen A. A blow-up crition for the 3D compressible Magnetohydrodynamics in terms of density. Discrete Contin Dyn Syst, 2013, 33: 3791–3805

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun Y Z, Wang C, Zhang Z F. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J Math Pure Appl, 2011, 95: 36–47

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun Y Z, Wang C, Zhang Z F. A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch Rational Mech Anal, 2011, 201: 727–742

    Article  MathSciNet  MATH  Google Scholar 

  37. Sun Y Z, Zhang Z F. A blow-up criterion of strongs to the 2D compressible Navier-Stokes equations. Sci China Math, 2011, 54: 105–116

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang Y. One new blowup criterion for the 2D full compressible Navier-Stokes system. Nonlinear Anal Real World Appl, 2014, 16: 214–226

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang Y F, Li S. Global regularity for the Cauchy problem of three-dimensional compressible magnetohydrodynamics equations. Nonlinear Anal Real World Appl, 2014, 18: 23–33

    Article  MathSciNet  MATH  Google Scholar 

  40. Wen H Y, Zhu C J. Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum. Adv in Math, 2013, 248: 534–572

    Article  MathSciNet  MATH  Google Scholar 

  41. Xin Z P. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51: 229–240

    Article  MathSciNet  MATH  Google Scholar 

  42. Xin Z P, Yan W. On blowup of classical solutions to the compressible Navier-Stokes Equations. Comm Math Phys, 2013, 321: 529–541

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu X Y, Zhang J W. A blow-up criterion for 3D non-resistive compressible magnetohydrodynamic equations with initial vacuum. Nonlinear Anal Real World Appl, 2011, 12: 3442–3451

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu X Y, Zhang J W. A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuum. Math Models Meth Appl Sci, 2012, 22: 1150010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Du, L. & Li, S. Blowup mechanism for viscous compressible heat-conductive magnetohydrodynamic flows in three dimensions. Sci. China Math. 58, 1677–1696 (2015). https://doi.org/10.1007/s11425-014-4951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4951-7

Keywords

MSC(2010)

Navigation