Skip to main content
Log in

Multiple solutions for weighted nonlinear elliptic system involving critical exponents

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, by using the idea of category, we investigate how the shape of the graph of h(x) affects the number of positive solutions to the following weighted nonlinear elliptic system:

$\left\{ \begin{gathered} - div(|x|^{ - 2a} \nabla u)\mu \frac{u} {{|x|^{2(a + 1)} }} = \frac{\alpha } {{\alpha + \beta }}h(x)\frac{{|u|^{\alpha - 2} |v|^\beta u}} {{|x|^{b2*(a,b)} }} + \lambda K_1 (x)|u|^{q - 2} u,\operatorname{in} \Omega , \hfill \\ - div(|x|^{ - 2a} \nabla v)\mu \frac{u} {{|x|^{2(a + 1)} }} = \frac{\beta } {{\alpha + \beta }}h(x)\frac{{|u|^\alpha |v|^{\beta - 2} v}} {{|x|^{b2*(a,b)} }} + \sigma K_2 (x)|v|^{q - 2} v,\operatorname{in} \Omega , \hfill \\ u = v = 0, \hfill \\ \end{gathered} \right. $

where 0 ∈ Ω is a smooth bounded domain in ℝN (N ⩾ 3), λ, σ > 0 are parameters, \(0 \leqslant \mu < \bar \mu _a \triangleq (\frac{{N - 2 - 2a}} {2})2 \); h(x), K 1(x) and K 2(x) are positive continuous functions in \(\bar \Omega \), 1 ⩽ q < 2, α, β > 1 and α + β = 2*(a, b) \((2*(a,b) \triangleq \frac{{2N}} {{N - 2(1 + a - b)}}) \), is critical Sobolev-Hardy exponent). We prove that the system has at least k nontrivial nonnegative solutions when the pair of the parameters (λ, σ) belongs to a certain subset of ℝ2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C, Filho D, Souto M. On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal, 2000, 42: 771–787

    Article  MathSciNet  MATH  Google Scholar 

  2. Assuncao R, Carriao P, Miyagaki O. Subcritical perturbations of a singular quasilinear elliptic equation involving the critical Hardy-Sobolev exponent. Nonlinear Anal, 2007, 66: 1351–1364.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch T, Peng S, Zhang Z. Existence or nonexistence of solutions to the elliptic equations related to Caffarelli-Kohn-Nirenberg inequalities. Calc Var Part Differ Equ, 2007, 30: 113–136

    Article  MathSciNet  MATH  Google Scholar 

  4. Binding P A, Drabek P, Huang Y X. On Neumann boundary value problems for some quasilinear elliptic equations. Electron J Differ Equ, 1997, 5: 1–11

    MathSciNet  Google Scholar 

  5. Brèzis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486–490

    Article  MathSciNet  MATH  Google Scholar 

  6. Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic problem with a sign changing weight function. J Differ Equ, 2003, 193: 481–499

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L, Kohn R, Nirenberg L. First order interpolation inequality with weights. Compos Math, 1984, 53: 259–275

    MathSciNet  MATH  Google Scholar 

  8. Cao D, Han P. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J Differ Equ, 2004, 205: 521–537

    Article  MathSciNet  MATH  Google Scholar 

  9. Catrina F, Wang Z. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm Pure Appl Math, 2001, 54: 229–257

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou K, Chu C. On the best constant for a weighted Hardy-Sobolev inequality. J London Math Soc, 1993, 48: 137–151

    Article  MathSciNet  MATH  Google Scholar 

  11. Felli V, Schneider M. Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. J Differ Equ, 2003, 191: 407–426

    Article  MathSciNet  Google Scholar 

  12. Ghoussoub N, Robert F. The effect of curvature on the best constant in the Hardy-Sobolev inequality. Geom Funct Anal, 2006, 16: 897–908

    Article  MathSciNet  Google Scholar 

  13. Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Amer Math Soc, 2000, 352: 5703–5743

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities. Nonlinear Anal, 2009, 71: 2688–2698

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang D. Positive solutions to the weighted critical quasilinear problems. Appl Math Comput, 2009, 213: 432–439

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang D. On elliptic problems with critical weighted Sobolev-Hardy exponents. Nonlinear Anal, 2007, 66: 1037–1050

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang D, Peng S. Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential. Appl Math Lett, 2005, 18: 1094–1100

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin H L. Multiple positive solutions for semilinear elliptic systems. J Math Anal Appl, 2012, 391: 107–118

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin H L. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent. Nonlinear Anal, 2012, 75: 2660–2671

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin M. Some further results for a class of weighted nonlinear elliptic equations. J Math Anal Appl, 2008, 337: 537–546

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions P L. The concentration-compactness principle in the calculus of variations: The limit case. I. Rev Math Iberoam, 1985, 1: 145–201

    Article  MATH  Google Scholar 

  22. Nyamoradi N. Existence of multiple positive solutions for quasilinear elliptic systems involving critical Hardy-Sobolev exponents and sign-changing weight function. Mathemat Model Anal, 2012, 17: 330–350

    Article  MathSciNet  MATH  Google Scholar 

  23. Nyamoradi N. Existence and multiplicity of solutions to Singular elliptic system with critical Sobolev-Hardy exponents and concave-convex nonlinearities. J Math Anal Appl, 2012, 396: 280–293

    Article  MathSciNet  MATH  Google Scholar 

  24. Nyamoradi N. On a p-Laplacian system with critical Hardy-Sobolev exponents and critical Sobolev exponents. Ukrainian Math J, 2012, 64: 912–929

    Article  MathSciNet  MATH  Google Scholar 

  25. Nyamoradi N. Multiplicity of positive solutions to weighted nonlinear elliptic system involving critical exponents. Sci China Math, 2013, 56: 1831–1844

    Article  MathSciNet  MATH  Google Scholar 

  26. Secchi S, Smets D, Willem M. Remarks on a Hardy-Sobolev inequality. Comptes Rendus Math, 2003, 336: 811–815

    Article  MathSciNet  MATH  Google Scholar 

  27. Struwe M. Variational Methods, 2nd ed. Berlin-Heidelberg: Springer-Verlag, 1996

    Book  MATH  Google Scholar 

  28. Wang Z, Willem M. Singular minimization problems. J Differ Equ, 2000, 161: 307–320

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu T F. On semilinear elliptic equations involving concave-convex nonlinearities and sign changing weight function. J Math Anal Appl, 2006, 318: 253–270

    Article  MathSciNet  MATH  Google Scholar 

  30. Xuan B. The eigenvalue problem for a singular quasilinear elliptic equation. Electron J Differ Equ, 2004, 16: 1–11

    Article  MathSciNet  Google Scholar 

  31. Xuan B. The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear Anal, 2005, 62: 703–725

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemat Nyamoradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyamoradi, N., Hsu, T. Multiple solutions for weighted nonlinear elliptic system involving critical exponents. Sci. China Math. 58, 161–178 (2015). https://doi.org/10.1007/s11425-014-4929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4929-5

Keywords

MSC(2010)

Navigation