Skip to main content
Log in

Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Ω of ℝ3. And a result on the existence and uniqueness of global spherically symmetric classical solutions is obtained. Here the initial data could be large and initial vacuum is allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga H. Long time behavior for one-dimensional motion of a general barotropic viscous fluid. Arch Ration Mech Anal, 1989, 108: 141–160

    Article  MATH  Google Scholar 

  2. Bourguignon J P, Brezis H. Remarks on Euler equation. J Funct Anal, 1974, 15: 341–363

    Article  MATH  MathSciNet  Google Scholar 

  3. Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl, 2004, 83: 243–275

    Article  MATH  MathSciNet  Google Scholar 

  4. Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120: 91–129

    Article  MATH  MathSciNet  Google Scholar 

  5. Choe H J, Kim H. Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids. Math Methods Appl Sci, 2005, 28: 1–28

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding S J, Wen H Y, Yao L, et al. Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum. SIAM J Math Anal, 2012, 44: 1257–1278

    Article  MATH  MathSciNet  Google Scholar 

  7. Ding S J, Wen H Y, Zhu C J. Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differential Equations, 2011, 251: 1696–1725

    Article  MATH  MathSciNet  Google Scholar 

  8. Duan R J. Green’s function and large time behavior of the Navier-Stokes-Maxwell system. Anal Appl, 2012, 10: 133–197

    Article  MATH  MathSciNet  Google Scholar 

  9. Fan J S, Jiang S, Ni G X. Uniform boundedness of the radially symmetric solutions of the Navier-Stokes equations for isentropic compressible fluids. Osaka J Math, 2009, 46: 863–876

    MATH  MathSciNet  Google Scholar 

  10. Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. New York: Springer-Verlag, 1994

    Google Scholar 

  11. Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39: 1402–1427

    Article  MATH  MathSciNet  Google Scholar 

  12. Hao C C, Li H L. Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions. J Differential Equations, 2009, 246: 4791–4812

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoff D. Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data. Indiana Univ Math J, 1992, 41: 1225–1302

    Article  MATH  MathSciNet  Google Scholar 

  14. Hou X F, Yao L, Zhu C J. Existence and uniqueness of global strong solutions to the Navier-Stokes-Maxwell system with large initial data and vacuum. Preprint, 2014

    Google Scholar 

  15. Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65: 549–585

    Article  MATH  MathSciNet  Google Scholar 

  16. Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41: 273–282

    Article  MathSciNet  Google Scholar 

  17. Li H L, Li J, Xin Z P. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm Math Phys, 2008, 281: 401–444

    Article  MATH  MathSciNet  Google Scholar 

  18. Li H L, Mastsumura A, Zhang G J. Optimal decay rate of the compressible Navier-Stokes-Poisson system in ℝ3. Arch Ration Mech Anal, 2010, 196: 681–713

    Article  MATH  MathSciNet  Google Scholar 

  19. Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104

    MATH  MathSciNet  Google Scholar 

  20. Matsumura A, Nishida T. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89: 445–464

    Article  MATH  MathSciNet  Google Scholar 

  21. Mellet A, Vasseur A. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2007/2008, 39: 1344–1365

    Article  MathSciNet  Google Scholar 

  22. Teman R. Navier-Stokes Equations. Amsterdam: North-Holland, 1984

    Google Scholar 

  23. Vaigant V A, Kazhikhov A V. On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid. Siberian Math J, 1995, 36: 1108–1141

    Article  MathSciNet  Google Scholar 

  24. Wang W K, Wu Z G. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions. J Differential Equations, 2010, 248: 1617–1636

    Article  MATH  MathSciNet  Google Scholar 

  25. Weigant V A. An example of the nonexistence with respect to time of the global solution of Navier-Stokes equations for a compressible viscous barotropic fluid. Dokl Akad Nauk, 1994, 339: 155–156

    Google Scholar 

  26. Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002 230: 329–363

    Article  MATH  MathSciNet  Google Scholar 

  27. Yeung L H, Yuen M W. Analytical solutions to the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure. Proc Amer Math Soc, 2011, 139: 3951–3960

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhang T, Fang D Y. Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient. Arch Ration Mech Anal, 2006, 182: 223–253

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhang Y H, Tan Z. On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007, 30: 305–329

    Article  MATH  MathSciNet  Google Scholar 

  30. Zlotnik A. On global in time properties of the symmetric compressible barotropic Navier-Stokes-Poisson flows in a vacuum, instability in models connected with fluid flows. In: Int Math Ser, vol. II. New York: Springer, 2008, 329–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangJiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, G., Hou, X., Peng, H. et al. Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum. Sci. China Math. 57, 2463–2484 (2014). https://doi.org/10.1007/s11425-014-4896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4896-x

Keywords

MSC(2010)

Navigation