Skip to main content
Log in

New schemes with fractal error compensation for PDE eigenvalue computations

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

With an error compensation term in the fractal Rayleigh quotient of PDE eigen-problems, we propose a new scheme by perturbing the mass matrix M h to \(\tilde M^h = M^h + Ch^{2m} K^h\), where K h is the corresponding stiff matrix of a 2m − 1 degree conforming finite element with mesh size h for a 2m-order self-adjoint PDE, and the constant C exists in the priority error estimation λ h j λ j Ch 2m λ 2 j . In particular, for Laplace eigenproblems over regular domains in uniform mesh, e.g., cube, equilateral triangle and regular hexagon, etc., we find the constant \(C = \frac{{\left\| {I - h^{ - 1} M^h } \right\|}} {{2\left\| {hK^h } \right\|}}\) and show that in this case the computation accuracy can raise two orders, i.e., from λ hj λ j = O(h 2) to O(h 4). Some numerical tests in 2-D and 3-D are given to verify the above arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Babuska I, Guo B Q, Osborn J E. Regularity and numerical solution of eigenvalue problems with piecewise analytic data. SIAM J Numer Anal, 1989, 26: 1534–1560

    Article  MATH  MathSciNet  Google Scholar 

  2. Babuska I, Osborn J E. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math Comp, 1989, 52: 275–297

    MATH  MathSciNet  Google Scholar 

  3. Babuska I, Osborn J E. Eigenvalue problems. In: Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis, V. II: Finite Element Methods (Part I). North-Holland: Elsevier, 1991, 641–784

    Chapter  Google Scholar 

  4. Betcke T, Trefethen L N. Reviving the method of particular solutions. SIAM Rev, 2005, 47: 469–491

    Article  MATH  MathSciNet  Google Scholar 

  5. Birkhoff G, de Boor C, Swartz B, et al. Rayleigh-Ritz approximation by piecewise cubic polynomials. SIAM J Numer Anal, 1966, 3: 188–203

    Article  MATH  MathSciNet  Google Scholar 

  6. Bramble J H, Knyazev A V, Pasciak J E. A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv Comput Math, 1996, 6: 159–189

    Article  MathSciNet  Google Scholar 

  7. Carstensen C, Gedicke J. An adaptive finite element eigenvalue solver of asymptotic quasi-optimal computational complexity. SIAM J Numer Anal, 2012, 50: 1029–1057

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen J T, Lin J H, Kuo S R, et al. Boundary element analysis for the Helmholtz eigenvalue problems with a multiply connected domain. Proc R Soc Lond A, 2001, 457: 2521–2546

    Article  MATH  MathSciNet  Google Scholar 

  9. Dai X, Xu J, Zhou A. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer Math, 2008, 110: 313–355

    Article  MATH  MathSciNet  Google Scholar 

  10. Dai X, Yang Z, Zhou A. Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions. Sci China Ser A, 2008, 51: 1401–1414

    Article  MATH  MathSciNet  Google Scholar 

  11. Fox L. Numerical Solution of Ordinary and Partial Differential Equations. Oxford, London: Pergamon Press, 1962

    MATH  Google Scholar 

  12. Li H Y, Sun J C, Xu Y. Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle. SIAM J Numer Anal, 2008, 46: 1653–1681

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoppe R H W, Wu H, Zhang Z. Adaptive finite element methods for the Laplace eigenvalue problem. J Numer Math, 2010, 18: 281–302

    Article  MATH  MathSciNet  Google Scholar 

  14. Lin L, Lu J, Ying L, et al. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation. J Comput Phys, 2012, 231: 2140–2154

    Article  MATH  MathSciNet  Google Scholar 

  15. Luo F, Lin Q, Xie H. Computing the lower and upper bounds of Laplace eigenvalue problem: By combining conforming and nonconforming finite element methods. Sci China Math, 2012, 55: 1069–1082

    Article  MATH  MathSciNet  Google Scholar 

  16. Lyashenko I N, Embergenov A, Meredov K M. A combination difference scheme for the eigenvalue problem of the laplace operator. J Math Sci, 1994, 72: 3091–3094

    Article  MathSciNet  Google Scholar 

  17. Lyashenko I N, Meredov K M, Embergenov A. Investigation of the variationaldifference method for determining the eigenvalues of the Laplace operator (in Russian). Izvestiya Akademii Nauk Turkmen SSR Series Fizika-Tekhn. Khimiya Geologica Nauk, 1984, 2: 1016–1059

    Google Scholar 

  18. Naga A, Zhang Z, Zhou A. Enhancing eigenvalue approximation by gradient recovery. SIAM J Sci Comput, 2006, 28: 1289–1300

    Article  MATH  MathSciNet  Google Scholar 

  19. Strang G, Fix G. An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall, 1973

    MATH  Google Scholar 

  20. Sun J C. Multivariate Fourier series over a class of non tensor-product partition domains. J Comput Math, 2003, 21: 53–62

    MATH  MathSciNet  Google Scholar 

  21. Sun J C. Fourier Transforms and Othogonal Polynomials on Non-traditional Domains. Hefei: Chinese University of Science and Techlonogy, 2009

    Google Scholar 

  22. Trefethen L N, Betcke T. Computed eigenmodes of planar regions. AMS Contemp Math, 2006, 412: 297–314

    Article  MathSciNet  Google Scholar 

  23. Weideman J A C, Trefethen L N. The eigenvalues of second-order spectral differentiation matrices. SIAM J Numer Anal, 1988, 25: 1279–1298

    Article  MATH  MathSciNet  Google Scholar 

  24. Weinberger H F. Variational methods for eigenvalue approximation. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1974

    Book  MATH  Google Scholar 

  25. Zhang Z, Naga, A. Function value recovery and its application in eigenvalue problems. SIAM J Numer Anal, 2012, 50: 272–286

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaChang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J. New schemes with fractal error compensation for PDE eigenvalue computations. Sci. China Math. 57, 221–244 (2014). https://doi.org/10.1007/s11425-013-4758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4758-y

Keywords

MSC(2010)

Navigation