Skip to main content
Log in

Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Based on a linear finite element space, two symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions are constructed and analyzed. Some relationships between the finite element method and the finite difference method are addressed, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank R E, Rose D J. Some error estimates for the box method. SIAM J Numer Anal, 24: 777–787 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cai Z, Mandel J, McCormick S. The finite volume element method for diffusion equations on general triangulations. SIAM J Numer Anal, 28: 392–402 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chou H S, Ye X. Unified analysis of finite volume methods for second order elliptic problems. SIAM J Numer Anal, 45: 1369–1653 (2007)

    Article  MathSciNet  Google Scholar 

  4. Hackbusch W. On first and second order box schemes. Computing, 41: 277–296 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Heinrich B. Finite Difference Methods on Irregular Networks. Berlin: Academie Verlag, 1987

    Google Scholar 

  6. Huang J, Xi S. On the finite volume element method for general selfadjoint elliptic problems. SIAM J Numer Anal, 35: 1762–1774 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lazarov R D, Mishev I D, Vassilevski P S. Finite volume methods for convection-diffusion problems. SIAM J Numer Anal, 33: 31–55 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li R, Chen Z, Wu W. Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Pure Appl Math, Vol 226. New York: Marcel Dekker Inc, 1999

    Google Scholar 

  9. Ma X, Mao D, Zhou A. Extrapolation for finite volume approximations. SIAM J Sci Comput, 24: 1974–1993 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liang S, Ma X, Zhou A. Finite volume methods for eigenvalue problems. BIT Numer Math, 41: 345–363 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Babuska I, Osborn J. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math Comput, 52: 275–297 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Babuska I, Osborn J. Eigenvalue problems. In: Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1). Providence: Elsevier, 1991, 641–792

    Google Scholar 

  13. Chatelin F. Spectral Approximations of Linear Operators. New York: Academic Press, 1983

    Google Scholar 

  14. Forstthe G E. Asymptotic lower bounds for the fundamental frequency of convex membranes. Pacific J Math, 5: 691–702 (1955)

    MathSciNet  Google Scholar 

  15. Lü T. Modification of correction procdeure for solving partial differential equations. Comm Appl Math Comput, 1: 13–20 (1990)

    Google Scholar 

  16. Armentano M, Duran R. Mass-lumping or not mass-lumping for eigenvalue problems. Numer Methods PDEs, 19: 653–664 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Hu J, Huang Y, Shen H. The lower approximation of eigenvalue by lumped mass finite element method. J Comput Math, 22: 545–556 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Armentano M, Duran R. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electronic Trans Numer Anal, 17: 93–101 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Lin Q, Lin J. Finite Element Methods: Accuracy and Improvement. Beijing: Science Press, 2006

    Google Scholar 

  20. Zhang Z, Yang Y, Zheng C. Eigenvalue approximation from below by Wilson’s element (in Chinese). Math Numer Sin, 29: 319–321 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Xu J, Zou Q. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Report No. AM298, PA: Penn State University, 2006

    Google Scholar 

  22. Adams R A. Sobolev Spaces. New York: Academic Press, 1975

    MATH  Google Scholar 

  23. Ciarlet P G, Lions J L. Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I). Amsterdam: North-Holland, 1991

    Google Scholar 

  24. Rudin W. Principles of Mathematical Analysis. New York: McGraw-Hill, 1964

    MATH  Google Scholar 

  25. Liang S, Ma X, Zhou A. A symmetric finite volume scheme for selfadjoint elliptic problems. J Comput Appl Math, 147: 121–136 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ma X, Shu S, Zhou A. Symmetric finite volume discretizations for parabolic Problems. Comput Meth Appl Mech Engrg, 192: 4467–4485 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Banerjee U, Osborn J. Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer Math, 56: 735–762 (1989)

    Article  MathSciNet  Google Scholar 

  28. Banerjee U. A note on the effect of numerical quadrature in finite element eigenvalue approximation. Numer Math, 61: 145–152 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ding J, Zhou A. Constructive approximations of Markov operators. J Stat Phys, 105: 863–878 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Todd M J. The Computation of Fixed Points and Applications. New York: Springer-Verlag, 1976

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihui Zhou.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant No. 10425105) and the National Basic Research Program of China (Grant No. 2005CB321704)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X., Yang, Z. & Zhou, A. Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions. Sci. China Ser. A-Math. 51, 1401–1414 (2008). https://doi.org/10.1007/s11425-008-0102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0102-3

Keywords

MSC(2000)

Navigation