Skip to main content
Log in

The growth of H-harmonic functions on the Heisenberg group

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We discuss the relationship between the frequency and the growth of H-harmonic functions on the Heisenberg group. Precisely, we prove that an H-harmonic function must be a polynomial if its frequency is globally bounded. Moreover, we show that a class of H-harmonic functions are homogeneous polynomials provided that the frequency of such a function is equal to some constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren F J Jr. Dirichlet’s problem for muptiple valued functions and the regularity of mass minimizing integral currents. In: Obata M, ed. Minimal Submanifolds and Geodesics. Amsterdam: North Holland, 1979, 1–6

    Google Scholar 

  2. Bellaïche A. The tangent space in sub-Riemannian geometry: Sub-Riemannian geometry. Progr Math, 1996, 144: 1–78

    Google Scholar 

  3. Bonfiglioli A, Lanconelli E, Uguzzoni F. Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. New York: Springer-Verlag Berlin Heidelberg, 2007

    MATH  Google Scholar 

  4. Bony J M. Principe du maximum, intégalité de Harnack et unicité du probl`eme de Cauchy pour les opérateurs elliptique dégénérés. Ann Inst Fourier (Grenoble), 1969, 19: 277–304

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang D C, Chang S C, Tie J Z. Laguerre calculus and Paneitz operator on the Heisenberg group. Sci China Ser A, 2009, 52: 2549–2569

    Article  MATH  MathSciNet  Google Scholar 

  6. Cygan J. Subadditivity of homogeneous norms on certain nilpotent Lie groups. Proc Amer Math Soc, 1981, 83: 69–70

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunkl C F. An addition theorem for Heisenberg harmonics. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund. Belmont, CA: Wadsworth International, 1982, 688–705

    Google Scholar 

  8. Folland G B. A fundamental solution for a subelliptic operator. Bull Amer Math Soc, 1973, 79: 373–376

    Article  MATH  MathSciNet  Google Scholar 

  9. Folland G B, Stein E M. Estimates for the \(\bar \partial _b \) complex and analysis on the Heisenberg group. Comm Pure Appl Math, 1974, 27: 459–522

    Article  MathSciNet  Google Scholar 

  10. Garofalo N. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J Differential Equations, 1993, 104: 117–146

    Article  MATH  MathSciNet  Google Scholar 

  11. Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann Inst Fourier (Grenoble), 1990, 40: 313–356

    Article  MATH  MathSciNet  Google Scholar 

  12. Garofalo N, Lin F H. Monotonicity properties of variational integrals, A p weights and unique continuation. Indiana Univ Math J, 1986, 35: 245–268

    Article  MATH  MathSciNet  Google Scholar 

  13. Garofalo N, Lin F H. Unique continuation for elliptic operators: A geometric-variational approach. Comm Pure Appl Math, 1987, 40: 347–366

    Article  MATH  MathSciNet  Google Scholar 

  14. Garofalo N, Shen Z W. Carleman estimates for a subelliptic operator and unique continuation. Ann Inst Fourier (Grenoble), 1994, 44: 129–166

    Article  MATH  MathSciNet  Google Scholar 

  15. Gaveau B. Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groups nilpotents. Acta Math, 1977, 139: 95–153

    Article  MATH  MathSciNet  Google Scholar 

  16. Greiner P C. Spherical harmonics on the Heisenberg group. Canad Math Bull, 1980, 23: 383–396

    Article  MATH  MathSciNet  Google Scholar 

  17. Grushin V V. On a class of hypoelliptic operators. Math USSR Sbornik, 1970, 12: 458–476

    Article  Google Scholar 

  18. Grushin V V. On a class of hypoelliptic pseudodifferential operators degenerate on submanifold. Math USSR Sbornik, 1971, 13: 155–186

    Article  MATH  Google Scholar 

  19. Han Q. Singular sets of harmonic functions in R 2 and their complexifications in C 2. Indiana Univ Math J, 2004, 53: 1365–1380

    Article  MATH  MathSciNet  Google Scholar 

  20. Han Q, Hardt R, Lin F H. Geometric measure of singular sets of elliptic equations. Comm Pure Appl Math, 1998, 51: 1425–1443

    Article  MATH  MathSciNet  Google Scholar 

  21. Hardy R, Simon L. Nodal sets for solutions of elliptic equations. J Differential Geometry, 1989, 30: 505–522

    Google Scholar 

  22. Hörmander L. Hypoelliptic second-order differential equations. Acta Math, 1967, 119: 147–171

    Article  MATH  MathSciNet  Google Scholar 

  23. Jerison D S. The Poincare inequality for vector fields satisfying Hörmander’s condition. Duke Math J, 1986, 53: 503–523

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaplan A. Fundamental solutions for a class of hyproelliptic PDE generated by composition of quadratic forms. Trans Amer Math Soc, 1980, 258: 147–153

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin F H. Nodal sets of solutions of elliptic and parabolic equations. Comm Pure App Math, 1991, XLIV: 287-308

  26. Matsuzawa T. Gevrey hypoellipticity for Grushin operators. Publ Res Inst Math Sci, 1997, 33: 775–799

    Article  MATH  MathSciNet  Google Scholar 

  27. Nagel A, Stein E M, Wainger S. Balls and metrics defined by vector fields I: Basic properties. Acta Math, 1985, 155: 103–147

    Article  MATH  MathSciNet  Google Scholar 

  28. Rothschild L P, Stein E M. Hypoelliptic differential operators and nilpotent groups. Acta Math, 1976, 137: 247–320

    Article  MathSciNet  Google Scholar 

  29. Sanchez-Calle A. Fundamental solutions and geometry of sum of squares of vector fields. Invent Math, 1984, 78: 143–160

    Article  MATH  MathSciNet  Google Scholar 

  30. Szegö G. Orthogonal polynomials. Amer Math Soc Colloquium Publication, 23. Providence, RI: Amer Math Soc, 1939

    Google Scholar 

  31. Tan K H, Yang X P. Sub-Riemannian objects and hypersurfaces of sub-Riemannian manifolds. Bull Aust Math Soc, 2004, 70: 177–198

    Article  MATH  MathSciNet  Google Scholar 

  32. Tian L, Yang X P. Nodal sets and horizontal singular sets of H-harmonic functions on the Heisenberg group. Preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiRong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Tian, L. & Yang, X. The growth of H-harmonic functions on the Heisenberg group. Sci. China Math. 57, 795–806 (2014). https://doi.org/10.1007/s11425-013-4638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4638-5

Keywords

MSC(2010)

Navigation