Skip to main content
Log in

Regularity for solutions to anisotropic obstacle problems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For Ω a bounded subset of ℝn, n ⩾ 2, ψ any function in Ω with values in ℝ ∪ {±∞} and \(\theta \in W^{1,\left( {q_i } \right)} \left( \Omega \right)\), let

$$\mathcal{K}_{\psi ,\theta }^{\left( {q_i } \right)} \left( \Omega \right) = \left\{ {v \in W^{1,\left( {q_i } \right)} \left( \Omega \right):v \geqslant \psi , a.e. and v - \theta \in W_0^{1,\left( {q_i } \right)} \left( \Omega \right)} \right\}.$$

This paper deals with solutions to \(\mathcal{K}_{\psi ,\theta }^{\left( {q_i } \right)}\)-obstacle problems for the A-harmonic equation

$$- div\mathcal{A}\left( {x,u\left( x \right),\nabla u\left( x \right)} \right) = - div f\left( x \right)$$

as well as the integral functional

$$I\left( {u;\Omega } \right) = \int_\Omega {f\left( {x,u\left( x \right),\nabla u\left( x \right)} \right)dx.}$$

Local regularity and local boundedness results are obtained under some coercive and controllable growth conditions on the operator A and some growth conditions on the integrand f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan A, Frehse J. Regularity Results for Nonlinear Elliptic Systems and Applications. Berlin: Springer-Verlag, 2002

    Book  MATH  Google Scholar 

  2. Boccardo L. An L s-estimate for the gradient of solutions of some nonlinear unilateral problems. Ann Mat Pura Appl, 1985, 141: 277–287

    Article  MATH  MathSciNet  Google Scholar 

  3. D’Ottavio A, Leonetti F, Musciano C. Boundedness of solutions of some linear elliptic equations with right hand side in the Morrey space L 1. Lambda Rend Mat, 1998, 18: 749–762

    MATH  MathSciNet  Google Scholar 

  4. Esposito L, Leonetti F, Mingione G. Sharp regularity for functionals with (p, q) growth. J Differential Equations, 2004, 204: 5–55

    MATH  MathSciNet  Google Scholar 

  5. Fusco N, Sbordone C. Local boundedness of minimizers in a limit case. Manuscripta Math, 1990, 69: 19–25

    Article  MATH  MathSciNet  Google Scholar 

  6. Gao H Y, Guo J, Zuo Y L, et al. Local regularity result in obstacle problems. Acta Math Sci Ser B Engl Ed, 2010, 30: 208–214

    MATH  MathSciNet  Google Scholar 

  7. Gao H Y, He Q, Niu H L, et al. Local regularity for very weak solutions to obstacle problems of the A-harmonic operators (In Chinese). Acta Math Sci Ser A Chin Ed, 2009, 29: 1291–1297

    MATH  MathSciNet  Google Scholar 

  8. Gao H Y, Huang Q H. Local regularity for solutions of anisotropic obstacle problems. Nonlinear Anal, 2012, 75: 4761–4765

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao H Y, Qiao J J, Chu Y M. Local regularity and local boundedness results for very weak solutions to obstacle problems. J Inequal Appl, 2010, doi: 10.1155/2010/878769

    Google Scholar 

  10. Gao H Y, Qiao J J, Wang Y, et al. Local reguarity results for minima of anisotropic functionals and solutions of anisotropic equations. J Inequal Appl, 2008, doi: 10.1155/2008/835736

    Google Scholar 

  11. Gao H Y, Tian H Y. Local regularity result for solutions of obstacle problems. Acta Math Sci Ser B Engl Ed, 2004, 24: 71–74

    MATH  MathSciNet  Google Scholar 

  12. Gao H Y, Wang H M, Chu Y M. Local boundedness results related to anisotropic functionals and anisotropic equations (In Chinese). Acta Math Sci Ser A Chin Ed, 2010, 30: 425–431

    MATH  MathSciNet  Google Scholar 

  13. Gao H Y, Wang M, Zhao H L. Very weak solutions to obstacle problems of A-harmonic equation (In Chinese). J Math Res Exposition, 2004, 24: 159–167

    MATH  MathSciNet  Google Scholar 

  14. Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation. Nonlinear Anal, 2000, 39: 463–482

    Article  MATH  MathSciNet  Google Scholar 

  15. Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton, NJ: Princeton University Press, 1983

    MATH  Google Scholar 

  16. Giaquinta M, Giusti E. On the regularity of the minima of variational integrals. Acta Math, 1982, 148: 31–46

    Article  MATH  MathSciNet  Google Scholar 

  17. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1977

    Book  MATH  Google Scholar 

  18. Iwaniec T, Sbordone C. Weak minima of variational integrals. J Reine Angew Math, 1994, 454: 143–161

    MATH  MathSciNet  Google Scholar 

  19. Ladyženskaya O A, Ural’ceva N N. Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968

    Google Scholar 

  20. Leonetti F, Petricca P V. Anisotropic elliptic systems with measure data. Ricerche Mat, 2005, 54: 591–595

    MATH  MathSciNet  Google Scholar 

  21. Leonetti F, Siepe F. Integrability for solutions of some anisotropic elliptic equations. Nonlinear Anal, 2012, 75: 2867–2873

    Article  MATH  MathSciNet  Google Scholar 

  22. Li G B, Martio O. Local and global integrability of gradients in obstacle problems. Ann Acad Sci Fenn Math, 1994, 19: 25–34

    MATH  MathSciNet  Google Scholar 

  23. Meyers N G, Elcrat A. Some results on regularity for solutions of nonlinear elliptic systems and quasi-regular functions. Duke Math J, 1975, 42: 121–136

    Article  MATH  MathSciNet  Google Scholar 

  24. Morrey C B. Multiple integrals in the calculus of variations. Berlin: Springer-Verlag, 1968

    Google Scholar 

  25. Stroffolini B. Global boundedness of solutions of anisotropic variational problems. Boll Unione Mat Ital Sez A Mat Soc Cult, 1991, 5: 345–352

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongYa Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H. Regularity for solutions to anisotropic obstacle problems. Sci. China Math. 57, 111–122 (2014). https://doi.org/10.1007/s11425-013-4601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4601-5

Keywords

MSC(2010)

Navigation