Skip to main content
Log in

Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper is an introduction to the modelling of viscoelastic fluids, with an emphasis on micromacro (or multiscale) models. Some elements of mathematical and numerical analysis are provided. These notes closely follow the lectures delivered by the second author at the Chinese Academy of Science during the Workshop “Stress Tensor Effects on Fluid Mechanics” in January 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newtonian Fluid Mech, 2006, 139: 153–176

    Article  MATH  Google Scholar 

  2. Ammar A, Mokdad B, Chinesta F, et al. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex, part II: Transient simulation using space-time separated representations. J Non-Newtonian Fluid Mech, 2007, 144: 98–121

    Article  MATH  Google Scholar 

  3. Ané C, Blach`ere S, Chafaï D, et al. Sur les inégalités de Sobolev logarithmiques. Société Mathématique de France, 2000

  4. Arnold A, Markowich P, Toscani G, et al. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm Part Diff Eq, 2001, 26: 43–100

    Article  MathSciNet  MATH  Google Scholar 

  5. Baaijens F P T. Mixed finite element methods for viscoelastic flow analysis: a review. J Non-Newtonian Fluid Mech, 1998, 79: 361–385

    Article  MATH  Google Scholar 

  6. Bajaj M, Pasquali M, Prakash J R. Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder. J Rheol, 2008, 52: 197–223

    Article  Google Scholar 

  7. Barrett J W, Schwab C, Süli E. Existence of global weak solutions for some polymeric flow models. Math Models and Methods in Applied Sciences, 2005, 15: 939–983

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrett J W, Süli E. Existence of global weak solutions to kinetic models for dilute polymers. Multiscale Model Simul, 2007, 6: 506–546

    Article  MathSciNet  MATH  Google Scholar 

  9. Barrett J W, Süli E. Existence and equilibration of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers. Math Models and Methods in Applied Sciences, 2011, 21: 1211–1289

    Article  MathSciNet  MATH  Google Scholar 

  10. Barron A R, Cohen A, Dahmen W, et al. Approximation and learning by greedy algorithms. Annals of Statistics, 2008, 36: 64–94

    Article  MathSciNet  MATH  Google Scholar 

  11. Beris A N, Edwards B J. Thermodynamics of Flowing Systems With Internal Microstructure. Oxford: Oxford University Press, 1994

    Google Scholar 

  12. Bird R B, Armstrong R C, Hassager O. Dynamics of polymeric liquids, vol. 1. Wiley Interscience, 1987

  13. Bird R B, Curtiss C F, Armstrong R C, et al. Dynamics of polymeric liquids, vol. 2. Wiley Interscience, 1987

  14. Bird R B, Dotson P J, Johnson N L. Polymer solution rheology based on a finitely extensible bead-spring chain model. J Non-Newtonian Fluid Mech, 1980, 7: 213–235

    Article  MATH  Google Scholar 

  15. Blanc X, Legoll F, Le Bris C, et al. Beyond multiscale and multiphysics: Multimaths for model coupling. Netw Heterog Media, 2010, 5: 423–460

    Article  MathSciNet  Google Scholar 

  16. Bonito A, Clément Ph, Picasso M. Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows. M2AN Math Model Numer Anal, 2006, 40: 785–814

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonito A, Clément Ph, Picasso M. Mathematical analysis of a stochastic simplified Hookean dumbbells model arising from viscoelastic flow. J Evol Equ, 2006, 6: 381–398, 2006

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonvin J, Picasso M. Variance reduction methods for CONNFFESSIT-like simulations. J Non-Newtonian Fluid Mech, 1999, 84: 191–215

    Article  MATH  Google Scholar 

  19. Bonvin J, Picasso M, Stenberg R. GLS and EVSS methods for a three fields Stokes problem arising from viscoelastic flows. Comp Meth Appl Mech Eng, 2001, 190: 3893–3914

    Article  MathSciNet  MATH  Google Scholar 

  20. Bonvin J C. Numerical simulation of viscoelastic fluids with mesoscopic models. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2000

  21. Boyaval S, Le Bris C, Lelièvre T, et al. Reduced basis techniques for stochastic problems. Arch Comput Method E, 2010, 17: 435–454

    Article  Google Scholar 

  22. Boyaval S, Lelièvre T. A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm. Commun Math Sci, 2010, 8: 735–762

    MathSciNet  MATH  Google Scholar 

  23. Boyaval S, Lelièvre T, Mangoubi C. Free-energy-dissipative schemes for the Oldroyd-B model. ESAIM-Math Model Num, 2009, 43: 523–561

    Article  MATH  Google Scholar 

  24. Braack M, Ern A. A posteriori control of modeling errors and discretization errors. Multiscale Model Simul, 2003, 1: 221–238

    Article  MathSciNet  MATH  Google Scholar 

  25. Bungartz H J, Griebel M. Sparse grids. Acta Numer, 2004, 13: 147–269

    Article  MathSciNet  Google Scholar 

  26. Cancès E, Ehrlacher V, Lelièvre T. Convergence of a greedy algorithm for high-dimensional convex nonlinear problems. Mathematical Models and Methods in Applied Sciences, 2011, 21: 2433–2467

    Article  Google Scholar 

  27. Chauvière C, Lozinski A. Simulation of dilute polymer solutions using a Fokker-Planck equation. Computers and fluids, 2004, 33: 687–696

    Article  MATH  Google Scholar 

  28. Constantin P. Nonlinear Fokker-Planck Navier-Stokes systems. Commun Math Sci, 2005, 3: 531–544

    MathSciNet  MATH  Google Scholar 

  29. Constantin P, Fefferman C, Titi A, et al. Regularity of coupled two-dimensional nonlinear Fokker-Planck and Navier-Stokes systems. Commun Math Phys, 2007, 270: 789–811

    Article  MathSciNet  MATH  Google Scholar 

  30. Constantin P, Kevrekidis I, Titi E S. Asymptotic states of a Smoluchowski equation. Archive Rational Mech Analysis, 2004, 174: 365–384

    Article  MathSciNet  MATH  Google Scholar 

  31. Constantin P, Kevrekidis I, Titi E S. Remarks on a Smoluchowski equation. Disc Cont Dyn Syst, 2004, 11: 101–112

    Article  MathSciNet  MATH  Google Scholar 

  32. Constantin P, Masmoudi N. Global well posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2d. Commun Math Phys, 2008, 278: 179–191

    Article  MathSciNet  MATH  Google Scholar 

  33. Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations. Constr Approx, 1997, 13: 57–98

    MathSciNet  MATH  Google Scholar 

  34. Delaunay P, Lozinski A, Owens R G. Sparse tensor-product Fokker-Planck-based methods for nonlinear bead-spring chain models of dilute polymer solutions. CRM Proc Lect Notes, 2007

  35. DeVore R A, Temlyakov V N. Some remarks on greedy algorithms. Adv Comput Math, 1996, 5: 173–187

    Article  MathSciNet  MATH  Google Scholar 

  36. Doi M, Edwards S F. The Theory of Polymer Dynamics. In: International Series of Monographs on Physics. Oxford: Oxford University Press, 1988

    Google Scholar 

  37. Du Q, Liu C, Yu P. FENE dumbbell model and its several linear and nonlinear closure approximations. SIAM MMS, 2006, 4: 709–731

    MathSciNet  Google Scholar 

  38. E W, Li T, Zhang P W. Convergence of a stochastic method for the modeling of polymeric fluids. Acta Math Appl Sinica Engl Ser, 2002, 18: 529–536

    Article  Google Scholar 

  39. E W, Li T, Zhang P W. Well-posedness for the dumbbell model of polymeric fluids. Commun Math Phys, 2004, 248: 409–427

    Google Scholar 

  40. Ern A, Lelièvre T. Adaptive models for polymeric fluid flow simulation. C R Acad Sci Paris Ser I, 2007, 344: 473–476

    MATH  Google Scholar 

  41. Fattal R, Kupferman R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the logconformation representation. J Non-Newtonian Fluid Mech, 2005, 126: 23–37

    Article  MATH  Google Scholar 

  42. Fernández-Cara E, Guillén F, Ortega R R. Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind. In: Handbook of numerical analysis, Vol. 8. New York: Elsevier, 2002

    Google Scholar 

  43. Fortin M, Fortin A. A new approach for the FEM simulation of viscoelastic flows. J Non-Newtonian Fluid Mech, 1989, 32: 295–310

    Article  MATH  Google Scholar 

  44. Grunewald N, Otto F, Villani C, et al. A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann Inst H Poincaré Probab Statist, 2009, 45: 302–351

    Article  MathSciNet  MATH  Google Scholar 

  45. Guénette R, Fortin M. A new mixed finite element method for computing viscoelastic flows. J Non-Newtonian Fluid Mech, 1999, 60: 27–52

    Article  Google Scholar 

  46. Guillopé C, Saut J C. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Analysis, Theory, Methods and Appl, 1990, 15: 849–869

    Article  MATH  Google Scholar 

  47. Guillopé C, Saut J C. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Math Model Num Anal, 1990, 24: 369–401

    MATH  Google Scholar 

  48. Halin P, Lielens G, Keunings R, et al. The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations. J Non-Newtonian Fluid Mech, 1998, 79: 387–403

    Article  MATH  Google Scholar 

  49. He L, Le Bris C, Lelièvre T. Periodic long-time behaviour for an approximate model of nematic polymers. Arxiv.org/abs/1107.3592

  50. Hébraud P, Lequeux F. Mode-coupling theory for the pasty rheology of soft glassy materials. Phys Rev Lett, 1998, 81: 2934–2937

    Article  Google Scholar 

  51. Hu D, Lelièvre T. New entropy estimates for the Oldroyd-B model, and related models. Commun Math Sci, 2007, 5: 906–916

    Google Scholar 

  52. Hulsen M A, Fattal R, Kupferman R. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J Non-Newtonian Fluid Mech, 2005, 127: 27–39

    Article  MATH  Google Scholar 

  53. Hyon Y, Du Q, Liu C. An enhanced macroscopic closure approximation to the micro-macro FENE models for polymeric materials. SIAM MMS, 2008, 7: 978–1002

    MathSciNet  MATH  Google Scholar 

  54. Jourdain B, Le Bris C, Lelièvre T. On a variance reduction technique for micro-macro simulations of polymeric fluids. J Non-Newtonian Fluid Mech, 2004, 122: 91–106

    Article  MATH  Google Scholar 

  55. Jourdain B, Le Bris C, Lelièvre T, et al. Long-time asymptotics of a multiscale model for polymeric fluid flows. Archive for Rational Mechanics and Analysis, 2006, 181: 97–148

    Article  MathSciNet  MATH  Google Scholar 

  56. Jourdain B, Lelièvre T. Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. In: Probabilistic Methods in Fluids Proceedings of the Swansea 2002 Workshop. Singapore: World Scientific, 2003

    Google Scholar 

  57. Jourdain B, Lelièvre T, Le Bris C. Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math Models and Methods in Applied Sciences, 2002, 12: 1205–1243

    Article  MathSciNet  MATH  Google Scholar 

  58. Jourdain B, Lelièvre T, Le Bris C. Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J Funct Anal, 2004, 209: 162–193

    Article  MathSciNet  MATH  Google Scholar 

  59. Keunings R. Simulation of viscoelastic fluid flow. In: Fundamentals of Computer Modeling for Polymer Processing, Hanse, 1989, 402–470

  60. Keunings R. A survey of computational rheology. In: Proc 13th Int Congr on Rheology. British Society of Rheology, 2000, 7–14

  61. Laso M, Öttinger H C. Calculation of viscoelastic flow using molecular models: The CONNFFESSIT approach. J Non-Newtonian Fluid Mech, 1993, 47: 1–20

    Article  MATH  Google Scholar 

  62. Le Bris C, Lelièvre T. Multiscale Modelling of Complex Fluids: A Mathematical Initiation. Lecture Notes in Computational Science and Engineering, vol. 66. Berlin: Springer, 2009

    Google Scholar 

  63. Le Bris C, Lelièvre T, Maday Y. Results and questions on a nonlinear approximation approach for solving highdimensional partial differential equations. Constructive Approximation, 2009, 30: 621–651

    Article  MathSciNet  MATH  Google Scholar 

  64. Le Bris C, Lions P L. Renormalized solutions to some transport equations with partially W 1,1 velocities and applications. Annali di Matematica Pura ed Applicata, 2004, 183: 97–130

    Article  MATH  Google Scholar 

  65. Le Bris C, Lions P L. Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Comm Part Diff Equ, 2008, 33: 1272–1317

    Article  MATH  Google Scholar 

  66. Lee Y, Xu J. New formulations positivity preserving discretizations and stability analysis for non-Newtonian flow models. Comput Methods Appl Mech Engrg, 2006, 195: 1180–1206

    Article  MathSciNet  MATH  Google Scholar 

  67. Legat V, Lelièvre T, Samaey G. A numerical closure approach for kinetic models of polymeric fluids: exploring closure relations for FENE dumbbells. Computers and Fluids, 2011, 43: 119–133

    Article  MathSciNet  MATH  Google Scholar 

  68. Legoll F, Lelièvre T. Effective dynamics using conditional expectations. Nonlinearity, 2010, 23: 2131–2163

    Article  MathSciNet  MATH  Google Scholar 

  69. Lelièvre T. A general two-scale criteria for logarithmic Sobolev inequalities. J Funct Anal, 2009, 256: 2211–2221

    Article  MathSciNet  MATH  Google Scholar 

  70. Lelièvre T, Rousset M, Stoltz G. Free Energy Computations: A Mathematical Perspective. London: Imperial College Press, 2010

    Book  MATH  Google Scholar 

  71. Leonov A I. Analysis of simple constitutive equations for viscoelastic liquids. J non-newton fluid mech, 1992, 42: 323–350

    Article  MATH  Google Scholar 

  72. Li T, Zhang H, Zhang P W. Local existence for the dumbbell model of polymeric fluids. Comm Part Diff Equ, 2004, 29: 903–923

    Article  MATH  Google Scholar 

  73. Li T, Zhang P W. Convergence analysis of BCF method for Hookean dumbbell model with finite difference scheme. SIAM MMS, 2006, 5: 205–234

    MATH  Google Scholar 

  74. Lielens G, Halin P, Jaumain I, et al. New closure approximations for the kinetic theory of finitely extensible dumbbells. J Non-Newton Fluid Mech, 1998, 76: 249–279

    Article  MATH  Google Scholar 

  75. Lielens G, Keunings R, Legat V. The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells. J Non-Newton Fluid Mech, 1999, 87: 179–196

    Article  MATH  Google Scholar 

  76. Lin F H, Liu C, Zhang P. On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 58: 1437–1471

    Article  MathSciNet  MATH  Google Scholar 

  77. Lin F H, Liu C, Zhang P. On a micro-macro model for polymeric fluids near equilibrium. Comm Pure Appl Math, 2007, 60: 838–866

    Article  MathSciNet  MATH  Google Scholar 

  78. Lin F H, Zhang P, Zhang Z. On the global existence of smooth solution to the 2-D FENE dumbell model. Comm Math Phys, 2008, 277: 531–553

    Article  MathSciNet  MATH  Google Scholar 

  79. Lions P L, Masmoudi N. Global solutions for some Oldroyd models of non-Newtonian flows. Chin Ann Math Ser B, 2000, 21: 131–146

    Article  MathSciNet  MATH  Google Scholar 

  80. Lions P L, Masmoudi N. Global existence of weak solutions to micro-macro models. C R Math Acad Sci, 2007, 345: 15–20

    MathSciNet  MATH  Google Scholar 

  81. Lozinski A. Spectral methods for kinetic theory models of viscoelastic fluids. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2003

  82. Lozinski A, Chauvière C. A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations. J Comp Phys, 2003, 189: 607–625

    Article  MATH  Google Scholar 

  83. Machiels L, Maday Y, Patera A T. Output bounds for reduced-order approximations of elliptic partial differential equations. Comput Methods Appl Mech Engrg, 2001, 190: 3413–3426

    Article  MathSciNet  MATH  Google Scholar 

  84. Marchal J M, Crochet M J. A new mixed finite element for calculating viscoelastic flows. J Non-Newtonian Fluid Mech, 1987, 26: 77–114

    Article  MATH  Google Scholar 

  85. Masmoudi N. Global existence of weak solutions to macroscopic models of polymeric flows. Journal de Mathématiques Pures et Appliquées, 2011, 96: 502–520

    Article  MATH  Google Scholar 

  86. Masmoudi N. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Arxiv.org/abs/1004.4015

  87. Masmoudi N. Well posedness for the FENE dumbbell model of polymeric flows. Comm Pure Appl Math, 2008, 61: 1685–1714

    Article  MathSciNet  MATH  Google Scholar 

  88. Min T, Yoo J Y, Choi H. Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J Non-Newtonian Fluid Mech, 2001, 100:27–47

    Article  MATH  Google Scholar 

  89. Nouy A. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Engrg, 2007, 196: 4521–4537

    Article  MathSciNet  MATH  Google Scholar 

  90. Nouy A, Le Maître O P. Generalized spectral decomposition method for stochastic non linear problems. J Comput Phys, 2009, 228: 202–235

    Article  MathSciNet  MATH  Google Scholar 

  91. Oden J T, Prudhomme S. Estimation of modeling error in computational mechanics. J Comput Phys, 2002, 182: 496–515

    Article  MathSciNet  MATH  Google Scholar 

  92. Oden J T, Vemaganti K S. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. i. error estimates and adaptive algorithms. J Comput Phys, 2000, 164: 22–47

    Article  MathSciNet  MATH  Google Scholar 

  93. Öttinger H C. Stochastic Processes in Polymeric Fluids. Berlin: Springer, 1995

    Google Scholar 

  94. Öttinger H C. Beyond Equilibrium Thermodynamics. New York: Wiley, 2005

    Book  Google Scholar 

  95. Otto F, Reznikoff M G. A new criterion for the logarithmic Sobolev inequality and two applications. J Funct Anal, 2007, 243: 121–157

    Article  MathSciNet  MATH  Google Scholar 

  96. Owens R G. A new microstructure-based constitutive model for human blood. J Non-Newtonian Fluid Mech, 2006, 140: 57–70

    Article  MATH  Google Scholar 

  97. Owens R G, Phillips T N. Computational Rheology. London: Imperial College Press, 2002

  98. Peterlin A. Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. J Polym Sci B, 1966, 4: 287–291

    Article  Google Scholar 

  99. Prud’homme C, Rovas D, Veroy K, et al. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. Journal of Fluids Engineering, 2002, 124: 70–80

    Article  Google Scholar 

  100. Rallison J M, Hinch E J. Do we understand the physics in the constitutive equation? J Non-Newtonian Fluid Mech, 1988, 29: 37–55

    Article  Google Scholar 

  101. Renardy M. Local existence of solutions of the Dirichlet initial-boundary value problem for incompressible hypoelastic materials. SIAM J Math Anal, 1990, 21: 1369–1385

    Article  MathSciNet  MATH  Google Scholar 

  102. Renardy M. An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J Math Anal, 1991, 22: 313–327

    Article  MathSciNet  MATH  Google Scholar 

  103. Renardy M. Mathematical Analysis of Viscoelastic Flows. Philadelphia: Society for Industrial and Applied Mathematics, 2000

    Book  MATH  Google Scholar 

  104. Sandri D. Non integrable extra stress tensor solution for a flow in a bounded domain of an Oldroyd fluid. Acta Mech, 1999, 135: 95–99

    Article  MathSciNet  MATH  Google Scholar 

  105. Suen J K C, Joo Y L, Armstrong R C. Molecular orientation effects in viscoelasticity. Annu Rev Fluid Mech, 2002, 34: 417–444

    Article  MathSciNet  Google Scholar 

  106. Temlyakov V N. Greedy approximation. Acta Numerica, 2008, 17: 235–409

    Article  MathSciNet  MATH  Google Scholar 

  107. Thomases B, Shelley M. Emergence of singular structures in Oldroyd-B fluids. Phys Fluids, 2007, 19: 103–103

    Article  Google Scholar 

  108. Von Petersdorff T, Schwab C. Numerical solution of parabolic equations in high dimensions. M2AN Math Model Numer Anal, 2004, 38: 93–127

    Article  MathSciNet  MATH  Google Scholar 

  109. Wapperom P, Hulsen M A. Thermodynamics of viscoelastic fluids: the temperature equation. J Rheol, 1998, 42: 999–1019

    Article  Google Scholar 

  110. Wapperom P, Keunings R, Legat V. The backward-tracking lagrangian particle method for transient viscoelastic flows. J Non-Newtonian Fluid Mech, 2000, 91: 273–295

    Article  MATH  Google Scholar 

  111. Yu P, Du Q, Liu C. From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids. SIAM MMS, 2005, 3: 895–917

    MathSciNet  MATH  Google Scholar 

  112. Zhang H, Zhang P W. A theoretical and numerical study for the rod-like model of a polymeric fluid. J Comput Math, 2004, 22: 319–330

    MathSciNet  MATH  Google Scholar 

  113. Zhang H, Zhang P W. Local existence for the FENE-dumbbell model of polymeric fluids. Archive for Rational Mechanics and Analysis, 2006, 2: 373–400

    Article  Google Scholar 

  114. Zhang L, Zhang H, Zhang P W. Global existence of weak solutions to the regularized Hookean-dumbbell model. Commun Math Sci, 2008, 6: 83–124

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lelièvre.

Additional information

Dedicated to the NSFC-CNRS Chinese-French summer institute on fluid mechanics in 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bris, C., Lelièvre, T. Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Sci. China Math. 55, 353–384 (2012). https://doi.org/10.1007/s11425-011-4354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-011-4354-y

Keywords

MSC(2010)

Navigation