Skip to main content
Log in

Convergence of a Stochastic Method for the Modeling of Polymeric Fluids

  • Original Papers
  • Published:
Acta Mathematicae Applicatae Sinica Aims and scope Submit manuscript

Abstract

We present a convergence analysis of a stochastic method for numerical modeling of complex fluids using Brownian configuration fields (BCF) for shear flows. The analysis takes into account the special structure of the stochastic partial differential equations for shear flows. We establish the optimal rate of convergence. We also analyze the nature of the error by providing its leading order asymptotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, R.B., Hassager, O., Armstrong, R.C., Curtiss, C.F. Dynamics of polymeric liquids, Vol.2: Kinetic theory. (2nd ed.), Wiley-Interscience, New York (1987)

  2. Doi, M., Edwards, S.F. The theory of polymer dynamics. Oxford University Press, New York (1986)

  3. Feng, J., Leal, L.G. Simulating complex flows of liquid crystalline polymers using the Doi theory. J. Rheol., 41, 1317–1335 (1997)

    Article  Google Scholar 

  4. Fishman, G.S. Monte Carlo: concepts, algorithms, and applications. Springer-Verlag, Heidelberg, New York (1995)

  5. De Gennes, P.G. Scaling concepts in polymer physics. Cornell Univ. Press, Ithaca, London (1979)

  6. Hulsen, M.A., van Heel, A.P.G., van den Brule, B.H.A.A. Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newtonian Fluid Mech., 70, 79–101 (1997)

    Article  Google Scholar 

  7. Kloeden, P.E., Platen, E. Numerical solution of stochastic differential equations. Springer-Verlag, Heidelberg, New York (1995)

  8. Laso, M., Öttinger, H.C. Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approach. J. Non-Newtonian Fluid Mech., 47, 1–20 (1993)

    Article  MATH  Google Scholar 

  9. Liu, T.W. Flexible polymer chain dynamics and rheological properties in the steady flows. J. Chem. Phys., 90, 5826–5842 (1989)

    Article  Google Scholar 

  10. Milstein, G.N. Numerical integration of stochastic differential equations. Kluwer Academic Publishers, Dordrecht, London, Norwell, New York (1995) (Translated from Russian)

  11. Nayak, R. Molecular simulation of liquid crystal polymer flow: a wavelet-finite element analysis. Ph D Thesis, MIT (1998)

  12. Oksendal, B. Stochastic differential equations: an introduction with applications. (4th ed.), Springer- Verlag, Heidelberg, New York (1998)

  13. Öttinger, H.C. Stochastic processes in polymeric liquids. Springer-Verlag, Heidelberg, New York (1996)

  14. Varadhan, S.R.S. Large deviation and applications. SIAM Press, Philadelphia (1984)

  15. Suen, J.K.C., Joo, Y.L., Armstrong, R.C. Molecular orientation effects in viscoelasticity. Annu. Rev. Fluid Mech., 34, 417–444 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weinan E*.

Additional information

* Partially supported by US ONR grant (No. N00014-01-1-0674).

** Partially supported by the Chinese Special Funds for Major State Research Projects (No. G19999032804), the Teaching and Research Award for outstanding young teachers from the Chinese MOE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

E*, W., Li, Tj. & Zhang**, Pw. Convergence of a Stochastic Method for the Modeling of Polymeric Fluids. Acta Mathematicae Applicatae Sinica, English Series 18, 529–536 (2002). https://doi.org/10.1007/s102550200055

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s102550200055

Keywords

2000 MR Subject Classification

Navigation