Skip to main content
Log in

A differentiable sphere theorem with positive Ricci curvature and reverse volume pinching

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let M n be a compact, simply connected n (⩾ 3)-dimensional Riemannian manifold without boundary and S n be the unit sphere Euclidean space ℝn+1. We derive a differentiable sphere theorem whenever the manifold concerned satisfies that the sectional curvature K M is not larger than 1, while Ric(M) ⩾ \( \frac{{n + 2}} {4} \) and the volume V (M) is not larger than (1 + η)V (S n) for some positive number η depending only on n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M. Convergence and rigidity of manifolds under Ricci curvature bounds. Invent Math, 1990, 102: 429–445

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson M, Cheeger J. C α-compactness for manifolds with Ricci curvature and injective radius bounded below. J Diff Geom, 1992, 35: 265–281

    MathSciNet  MATH  Google Scholar 

  3. Brendle S, Schoen R. Classifications of manifolds with weakly 1/4-pinched curvatures. Acta Math, 2008, 200: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  4. Brendle S, Schoen R. Manifolds with 1/4-pinched curvature are space forms. J Amer Math Soc, 2009, 22: 287–307

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai M. Rigidity of manifolds with large volume. Math Z, 1992, 213: 17–31

    Article  Google Scholar 

  6. Cheeger J, Ebin D G. Comparison Theorems in Riemannian Geometry. Amesterdam: North-Holland, 1975

    MATH  Google Scholar 

  7. Coghlan L, Itokawa Y. A sphere theorem for reverse volume pinching on even-dimension manifolds. Proc Amer Math Soc, 1991, 111: 815–819

    MathSciNet  MATH  Google Scholar 

  8. Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. 2nd ed. Grundlehoen der mathematischen Wissenschaften: Springer-Verlag, 1983

  9. Gromov M. Groups of polynomial growth and expanding maps. Inst Hautes Etudes Sci Pub Math, 1981, 53: 183–215

    Google Scholar 

  10. Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Boston: Birkhäauser, 1999

    MATH  Google Scholar 

  11. Grove K, Petersen V P. Manifolds near the boundary of existence. J Diff Geom, 1991, 33: 379–394

    MathSciNet  MATH  Google Scholar 

  12. Hartman P. Oscillation criteria for self-adjoint second-oder differential systems and principle sectional curvature. J Diff Equ, 1979, 34: 326–338

    Article  MathSciNet  MATH  Google Scholar 

  13. Hebey E. Nonlinear Analysisi on Manifolds: Sobolev Space and Inequalities. New York: New York University Press, 1998

    Google Scholar 

  14. Kazdan J L. An isoperimetric inequality and Wiedersehen manifolds. In: S.T. Yau: Seminar on differential geometry (Ann Math Stud no 102, pp. 143–157) Princeton: Princeton University Press, 1982

    Google Scholar 

  15. Peters S. Convergence of Riemannian manifolds. Compositio Math, 1987, 62: 3–16

    MathSciNet  MATH  Google Scholar 

  16. Petersen P. Riemannian Geometry. New York: Springer, 1998

    MATH  Google Scholar 

  17. Sakai T. On continuity of injectivity radius function. Math J Okayama Univ, 1983, 25: 91–97

    MathSciNet  MATH  Google Scholar 

  18. Shen Z. A sphere theorem for manifolds of positive Ricci curvature. Indiana Univ Math J, 1989, 38: 229–233

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang P. A gap phenomenon on Riemannian manifolds with reverse volume pinching. Acta Mathematica Hungarica, 2007, 115: 133–144

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang P. A differential sphere theorem on manifolds with reverse volume pinching. Acta Mathematica Hungarica, 2008, 119: 63–69

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang P, Wen Y. A rigidity phenomenon on Riemannian manifolds with reverse volume pinching. Ann Global Anal Geom, 2008, 34: 69–76

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang P, Shen C. A differentiable sphere theorem with positive Ricci curvature and reverse excess pinching. Chin Ann Math Ser B, 2009, 30: 67–76

    Article  MathSciNet  MATH  Google Scholar 

  23. Wen Y. A note on pinching sphere theorem. C R Acad Sci Paris Ser I, 2004, 338: 229–234

    MATH  Google Scholar 

  24. Xia C Y. Rigidity and sphere theorem for manifolds with positive Ricci curvature. Manuscript Math, 1994, 85: 79–87

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PeiHe Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Wen, Y. A differentiable sphere theorem with positive Ricci curvature and reverse volume pinching. Sci. China Math. 54, 603–610 (2011). https://doi.org/10.1007/s11425-010-4126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-4126-0

Keywords

MSC(2000)

Navigation