Skip to main content
Log in

Abstract

In this paper, we obtain several new intrinsic and extrinsic differentiable sphere theorems via Ricci flow. For intrinsic case, we show that a closed simply connected \(n(\ge 4)\)-dimensional Riemannian manifold M is diffeomorphic to \(\mathbb {S}^n\) if one of the following conditions holds pointwisely:

$$\begin{aligned} (i)\ R_0>\left( 1-\frac{24(\sqrt{10}-3)}{n(n-1)}\right) K_{max};\quad \ (ii)\ \frac{Ric^{[4]}}{4(n-1)}>\left( 1-\frac{6(\sqrt{10}-3)}{n-1}\right) K_{max}. \end{aligned}$$

Here \(K_{max}\), \(Ric^{[k]}\) and \(R_0\) stand for the maximal sectional curvature, the k-th weak Ricci curvature and the normalized scalar curvature. For extrinsic case, i.e., when M is a closed simply connected \(n(\ge 4)\)-dimensional submanifold immersed in \(\bar{M}\). We prove that M is diffeomorphic to \(\mathbb {S}^n\) if it satisfies some curvature pinching conditions. The only involved extrinsic quantities in our pinching conditions are the maximal sectional curvature \(\bar{K}_{max}\) and the squared norm of mean curvature vector \(\left|H\right|^2\). More precisely, we show that M is diffeomorphic to \(\mathbb {S}^n\) if one of the following conditions holds:

  1. (1)

    \(R_0\ge \left( 1-\frac{2}{n(n-1)}\right) \bar{K}_{max} +\frac{n(n-2)}{(n-1)^2}\left|H\right|^2\), and strict inequality is achieved at some point;

  2. (2)

    \(\dfrac{Ric^{[2]}}{2}\ge (n-2)\bar{K}_{max}+\frac{n^2}{8}\left|H\right|^2,\) and strict inequality is achieved at some point;

  3. (3)

    \(\dfrac{Ric^{[2]}}{2} \ge \frac{n(n-3)}{n-2}\left( \bar{K}_{max}+\left|H\right|^2\right) ,\) and strict inequality is achieved at some point.

It is worth pointing out that, in the proof of extrinsic case, we apply suitable complex orthonormal frame and simplify the calculations considerably. We also emphasize that both of the pinching constants in (2) and (3) are optimal for \(n=4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, B., Baker, C.: Mean curvature flow of pinched submanifolds to spheres. J. Differ. Geom. 85(3), 357–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, M.: Les variétés Riemanniennes \((1/4)\)-pincées. Ann. Scuola Norm. Sup. Pisa (3) 14, 161–170 (1960)

    MathSciNet  MATH  Google Scholar 

  3. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. (2) 167(3), 1079–1097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brendle, S.: A general convergence result for the Ricci flow in higher dimensions. Duke Math. J. 145(3), 585–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151(1), 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brendle, S.: Ricci Flow and the Sphere Theorem, Graduate Studies in Mathematics, vol. 111. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  7. Brendle, S., Schoen, R.: Classification of manifolds with weakly \(1/4\)-pinched curvatures. Acta Math. 200(1), 1–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brendle, S., Schoen, R.: Manifolds with \(1/4\)-pinched curvature are space forms. J. Amer. Math. Soc. 22(1), 287–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. (2) 96, 413–443 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Costa, E., Ribeiro Jr., E.: Four-dimensional compact manifolds with nonnegative biorthogonal curvature. Mich. Math. J. 63(4), 747–761 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ejiri, N.: Compact minimal submanifolds of a sphere with positive Ricci curvature. J. Math. Soc. Jpn. 31(2), 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gromoll, D., Meyer, W.: On complete open manifolds of positive curvature. Ann. Math. (2) 90, 75–90 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, J., Xu, H.: The sphere theorems for manifolds with positive scalar curvature. J. Differ. Geom. 92(3), 507–545 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, J., Xu, H., Zhao, E.: A sharp differentiable pinching theorem for manifolds with positive scalar curvature, preprint (2017)

  15. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamilton, R.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huisken, G.: Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84(3), 463–480 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karcher, H.: A short proof of Berger’s curvature tensor estimates. Proc. Amer. Math. Soc. 26, 642–644 (1970)

    MathSciNet  MATH  Google Scholar 

  20. Klingenberg, W.: über Riemannsche Mannigfaltigkeiten mit positiver Krümmung. Comment. Math. Helv. 35, 47–54 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lawson Jr., H., Simons, J.: On stable currents and their application to global problems in real and complex geometry. Ann. Math. (2) 98, 427–450 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, K., Xu, H., Ye, F., Zhao, E.: Mean curvature flow of higher codimension in hyperbolic spaces. Comm. Anal. Geom. 21(3), 651–669 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Micallef, M., Moore, J.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. (2) 127(1), 199–227 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Micallef, M., Wang, M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72(3), 649–672 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Myers, S.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perelman, G.: Proof of the soul conjecture of Cheeger and Gromoll. J. Differ. Geom. 40(1), 209–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rauch, H.: A contribution to differential geometry in the large. Ann. Math. (2) 54, 38–55 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seshadri, H.: Manifolds with nonnegative isotropic curvature. Comm. Anal. Geom. 17(4), 621–635 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xin, Y.: An application of integral currents to the vanishing theorems. Sci. Sin. Ser. A 27(3), 233–241 (1984)

    MathSciNet  MATH  Google Scholar 

  30. Xu, H., Gu, J.: An optimal differentiable sphere theorem for complete manifolds. Math. Res. Lett. 17(6), 1111–1124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, H., Gu, J.: Geometric, topological and differentiable rigidity of submanifolds in space forms. Geom. Funct. Anal. 23(5), 1684–1703 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, H., Gu, J.: Rigidity of Einstein manifolds with positive scalar curvature. Math. Ann. 358(1–2), 169–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, H., Tian, L.: A differentiable sphere theorem inspired by rigidity of minimal submanifolds. Pac. J. Math. 254(2), 499–510 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yau, S.: Selected expository works of Shing-Tung Yau with commentary. Vol. I. In: Li, Lizhen Ji Peter, Liu, Kefeng, Schoen, Richard (eds.) Advanced Lectures in Mathematics (ALM), vol. 28. International Press and Higher Education Press, Somerville and Beijing (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jun Sun for useful discussions and suggestions. We also want to thank the referee for his/her careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Sun.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by National Natural Science Foundation of China (Grant Nos. 11601442, 11801420, 11571259, 11501470) and Fundamental Research Funds for the Central Universities (Grant Nos. 2682016CX114, 2042018kf0044).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Sun, L. Some differentiable sphere theorems. Calc. Var. 58, 43 (2019). https://doi.org/10.1007/s00526-019-1487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1487-2

Mathematics Subject Classification

Navigation