Skip to main content
Log in

A sufficient condition for the genus of an amalgamated 3-manifold not to go down

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

Let M i be a connected, compact, orientable 3-manifold, F i a boundary component of M i with g(F i ) ⩾ 2, i = 1, 2, and F 1F 2. Let φ: F 1F 2 be a homeomorphism, and M = M 1φ M 2, F = F 2 = φ(F 1). Then it is known that g(M) ⩽ g(M 1)+g(M 2)−g(F). In the present paper, we give a sufficient condition for the genus of an amalgamated 3-manifold not to go down as follows: Suppose that there is no essential surface with boundary (Q i , ∂Q i ) in (M i , F i ) satisfying χ(Q i ) > 3 − 2g(M i ), i = 1, 2. Then g(M) = g(M 1) + g(M 2) − g(F).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachman D, Derby-Talbot R. Degeneration of Heegaard genus, a survey. Geom Topol Monogr, 2007, 12: 1–15

    Article  MathSciNet  Google Scholar 

  2. Casson A J, Gordon C McA. Reducing Heegaard splittings. Topology Appl, 1987, 27: 275–283

    Article  MATH  MathSciNet  Google Scholar 

  3. Hempel J. 3-Manifolds. Princeton: Princeton University Press, 1976

    MATH  Google Scholar 

  4. Kobayashi T, Qiu R F. The amalgamation of high distance Heegaard splittings is always efficient. Math Ann, 2008, 341: 707–715

    Article  MATH  MathSciNet  Google Scholar 

  5. Kobayashi T, Qiu R F, Rieck Y, et al. Separating incompressible surfaces and stabilizations of Heegaard splittings. Math Proc Cambridge Philos Soc, 2004, 137: 633–643

    Article  MATH  MathSciNet  Google Scholar 

  6. Lackenby M. The Heegaard genus of amalgamated 3-manifolds. Geom Dedicata, 2004, 109: 139–145

    Article  MATH  MathSciNet  Google Scholar 

  7. Lei F C, Yang G Q. A lower bound of genus of amalgamtions of Heegaard splittings. Math Proc Cambridge Philos Soc, 2009, 146: 615–623

    Article  MATH  MathSciNet  Google Scholar 

  8. Li T. On the Heegaard splittings of amalgamated 3-manifolds. Geom Topol Monogr, 2007, 12: 157–190

    Article  Google Scholar 

  9. Scharlemann M. Local detection of strongly irreducible Heegaard splittings. Topology Appl, 1998, 90: 135–147

    Article  MATH  MathSciNet  Google Scholar 

  10. Scharlemann M, Thompson A. Thin position for 3-manifolds. Contemp Math, 1994, 164: 231–238

    MathSciNet  Google Scholar 

  11. Schultens J. The classification of Heegaard splittings for (compact orientable surfaces)×S 1. Proc London Math Soc, 1993, 67: 425–448

    Article  MATH  MathSciNet  Google Scholar 

  12. Schultens J. Additivity of tunnel number for small knots. Comment Math Helv, 2000, 75: 353–363

    Article  MATH  MathSciNet  Google Scholar 

  13. Schultens J, Weidmann R. Destabilizing amalgamated Heegaard splittings. Geom Topol Monogr, 2007, 12: 319–334

    Article  MathSciNet  Google Scholar 

  14. Souto J. Distance in the curve complex and Heegaard genus. Preprint

  15. Yang G Q, Lei F C. On amalgamtions of Heegaard splittings with high distance. Proc Amer Math Soc, 2009, 137: 723–731

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FengLing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Yang, G. & Lei, F. A sufficient condition for the genus of an amalgamated 3-manifold not to go down. Sci. China Math. 53, 1697–1702 (2010). https://doi.org/10.1007/s11425-010-3130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-3130-8

Keywords

MSC(2000)

Navigation