Skip to main content
Log in

On the Friedlander–Nadirashvili invariants of surfaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let M be a closed smooth manifold. In 1999, Friedlander and Nadirashvili introduced a new differential invariant \(I_1(M)\) using the first normalized nonzero eigenvalue of the Lalpace–Beltrami operator \(\Delta _g\) of a Riemannian metric g. They defined it taking the supremum of this quantity over all Riemannian metrics in each conformal class, and then taking the infimum over all conformal classes. By analogy we use k-th eigenvalues of \(\Delta _g\) to define the invariants \(I_k(M)\) indexed by positive integers k. In the present paper the values of these invariants on surfaces are investigated. We show that \(I_k(M)=I_k({\mathbb {S}}^2)\) unless M is a non-orientable surface of even genus. For orientable surfaces and \(k=1\) this was earlier shown by Petrides. In fact Friedlander and Nadirashvili suggested that \(I_1(M)=I_1({\mathbb {S}}^2)\) for any surface M different from \({\mathbb {RP}}^2\). We show that, surprisingly enough, this is not true for non-orientable surfaces of even genus, for such surfaces one has \(I_k(M)>I_k({\mathbb {S}}^2)\). We also discuss the connection between the Friedlander–Nadirashvili invariants and the theory of cobordisms, and conjecture that \(I_k(M)\) is a cobordism invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anné, C.: Spectre du Laplacien et écrasement d’anses. Annales scientifiques de l’Ecole normale Suprérieure 20, 271–280 (1987)

    Article  Google Scholar 

  2. Besson, G.: Sur la multiplicité de la première valeur propre des surfaces riemanniennes. Annales de l’Institut Fourier 30(1), 109–128 (1980)

    Article  MathSciNet  Google Scholar 

  3. Buser, P.: Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  4. Buser, P., Seppälä, M.: Symmetric pants decompositions of Riemann surfaces. Duke Math. J. 67(1), 39–55 (1992)

    Article  MathSciNet  Google Scholar 

  5. Cheng, S.-Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)

    Article  MathSciNet  Google Scholar 

  6. Cianci, D., Karpukhin, M., Medvedev, V.: On branched minimal immersions of surfaces by first eigenfunctions. Ann. Glob. Anal. Geom. 56(4), 667–690 (2019)

    Article  MathSciNet  Google Scholar 

  7. Colbois, B., Dodziuk, J.: Riemannian metrics with large \(\lambda _1\). Proc. Am. Math. Soc. 122(3), 905–906 (1994)

    MATH  Google Scholar 

  8. Colbois, B., El Soufi, A.: Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Glob. Anal. Geom. 24(4), 337–349 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dodziuk, J.: Eigenvalues of the Laplacian on forms. Proc. Am. Math. Soc. 85(3), 437–443 (1982)

    Article  MathSciNet  Google Scholar 

  10. El Soufi, A., Ilias, S.: Laplacian eigenvalue functionals and metric deformations on compact manifolds. J. Geom. Phys. 58(1), 89–104 (2008)

    Article  MathSciNet  Google Scholar 

  11. El Soufi, A., Ilias, S., Ros, A.: Sur la première valeur propre des tores. Séminaire de théorie spectrale et géométrie 15, 17–23 (1996)

    Article  Google Scholar 

  12. Enciso, A., Peralta-Salas, D.: Eigenfunctions with prescribed nodal sets. J. Differ. Geom. 101(2), 197–211 (2015)

    Article  MathSciNet  Google Scholar 

  13. Friedlander, L., Nadirashvili, N.: A differential invariant related to the first eigenvalue of the Laplacian. Int. Math. Res. Not. 17, 939–952 (1999)

    Article  MathSciNet  Google Scholar 

  14. Girouard, A.: Fundamental tone, concentration of density, and conformal degeneration on surfaces. Can. J. Math. 61(3), 548–565 (2009)

    Article  MathSciNet  Google Scholar 

  15. Girouard, A., Lagacé, J.: Large Steklov eigenvalues via homogenisation on manifolds (preprint). arXiv:2004.04044, (2020)

  16. Hassannezhad, A.: Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261(12), 3419–3436 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B 270, A1645–A1648 (1970)

    MATH  Google Scholar 

  18. Hummel, C.: Gromov’s compactness theorem for pseudo-holomorphic curves, Progress in Mathematics, vol. 151. Birkhäuser, Basel (1997)

    Book  Google Scholar 

  19. Jammes, P.: Premère valeur propre du Laplacien, volume conforme et chirurgies. Geom. Dedicata 135(1), 29–37 (2008)

    Article  MathSciNet  Google Scholar 

  20. Karpukhin, M.: Index of minimal spheres and isoperimetric eigenvalue inequalities (preprint). arXiv:1905.03174 (2019)

  21. Karpukhin, M., Stern, D.L.: Min-max harmonic maps and a new characterization of conformal eigenvalues (preprint). arXiv:2004.04086, (2020)

  22. Karpukhin, M., Nadirashvili, N., Penskoi, A.V., Polterovich, I.: An isoperimetric inequality for Laplace eigenvalues on the sphere (preprint). arXiv:1706.05713

  23. Korevaar, N.: Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37(1), 73–93 (1993)

    Article  MathSciNet  Google Scholar 

  24. Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    Article  MathSciNet  Google Scholar 

  25. Matthiesen, H., Siffert, A.: Handle attachment and the normalized first eigenvalue (preprint). arXiv:1909.03105 (2019)

  26. Medvedev, V.: Degenerating sequences of conformal classes and the conformal Steklov spectrum (preprint). arXiv:2004.13776 (2020)

  27. Milnor, J.: Lectures on the \(h\)-cobordism theorem. Notes by L. Siebenmann and J. Sondow. Princeton University Press, Princeton (1965)

  28. Milnor, J.W., Stasheff, J.D.: Characteristic classes. Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1974)

  29. Nadirashvili, N.S.: Multiple eigenvalues of the Laplace operator. Sbornik: Mathematics 61(1), 225–238 (1988)

    Article  MathSciNet  Google Scholar 

  30. Nadirashvili, N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6(5), 877–897 (1996)

    Article  MathSciNet  Google Scholar 

  31. Nadirashvili, N., Penskoi, A.: An isoperimetric inequality for the second non-zero eigenvalue of the Laplace–Beltrami operator on the projective plane. Geom. Funct. Anal. 28(5), 1368–1393 (2018)

    Article  MathSciNet  Google Scholar 

  32. Nayatani, S., Shoda, T.: Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus Math. 357(1), 84–98 (2019)

    Article  MathSciNet  Google Scholar 

  33. Penskoĭ, A.V.: Isoperimetric inequalities for higher eigenvalues of the Laplace–Beltrami operator on surfaces (Russian). Trudy Matematicheskogo Instituta Imeni V. A. Steklova, vol. 305 (Algebraicheskaya Topologiya Kombinatorika i Matematicheskaya Fizika), pp. 291–308 (2019)

  34. Petrides, R.: Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geom. Funct. Anal. 24(4), 1336–1376 (2014)

    Article  MathSciNet  Google Scholar 

  35. Petrides, R.: On a rigidity result for the first conformal eigenvalue of the Laplacian. J. Spectr. Theory 5(1), 227–234 (2015)

    Article  MathSciNet  Google Scholar 

  36. Petrides, R.: On the existence of metrics which maximize Laplace eigenvalues on surfaces. Int. Math. Res. Not. 2018(14), 4261–4355 (2018)

    Article  MathSciNet  Google Scholar 

  37. Seppälä, M.: Moduli spaces of stable real algebraic curves. Ann. Sci. Éc. Norm. Sup. 24(5), 519–544 (1991)

    Article  MathSciNet  Google Scholar 

  38. Taylor, M.E.: Partial Differential Equations I. Basic Theory. Applied Mathematical Sciences, vol. 117, 2nd edn (2011)

  39. Wolf, S.A., Keller, J.B.: Range of the first two eigenvalues of the Laplacian. Proc. R. Soc. Lond. A. 447(1930), 397–412 (1994)

    Article  MathSciNet  Google Scholar 

  40. Zhu, M.: Harmonic maps from degenerating Riemann surfaces. Math. Z. 264(1), 63–85 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Iosif Polterovich for fruitful discussions and for his remarks on the initial draft of the manuscript. The authors would like to thank Alexandre Girouard for outlining the proof of Proposition 4.2 and Bruno Colbois for valuable remarks. The authors are thankful to the reviewer for useful remarks and suggestions. During the preparation of this manuscript the first author was supported by Schulich Fellowship. This research is a part of the second author’s PhD thesis at the Université de Montréal under the supervision of Iosif Polterovich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Medvedev.

Additional information

Communicated by F. C. Marques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpukhin, M., Medvedev, V. On the Friedlander–Nadirashvili invariants of surfaces. Math. Ann. 379, 1767–1805 (2021). https://doi.org/10.1007/s00208-020-02094-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02094-2

Navigation