Skip to main content
Log in

Carleman estimates and unique continuation property for the anisotropic differential-operator equations

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued L p -spaces are studied. To obtain the uniform maximal regularity and the Carleman type estimates for parameter depended differential-operator equations, the sufficient conditions are founded. By using these facts, the unique continuation properties are established. In the application part, the unique continuation properties and Carleman estimates for finite or infinite systems of quasielliptic partial differential equations are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jerison D, Kenig C E. Unique continuation and absence of positive eigenvalues for Schrodinger operators. Adv Math, 62: 118–134 (1986)

    Article  MATH  Google Scholar 

  2. Sogge C D. Oscillatory integrals, Carleman inequalities and unique continuation for second order elliptic differential equations. J Amer Math Soc, 2: 491–516 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wolff T. Unique continuation for |△u| ⩽ V |∇u| and releted problems. Rev Mat Iberoamericana, 6(3–4): 155–200 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Koch H, Tataru D. Carleman estimates and unique continuation for second order elliptic equations with non-smooth coefficients. Comm Pure Appl Math, 54(3): 330–360 (2001)

    Article  MathSciNet  Google Scholar 

  5. Amann H. Linear and quasi-linear equations, 1. Basel: Birkhauser, 1995

    Google Scholar 

  6. Krein S G. Linear Differential Equations in Banach Space. Providence: American Mathematical Society, 1971

    Google Scholar 

  7. Shklyar A Y. Complete Second Order Linear Differential Equations in Hilbert Spaces. Basel: Birkhäuser Verlak, 1997

    MATH  Google Scholar 

  8. Yakubov S, Yakubov Y. Differential-Operator Equations, Ordinary and Partial Differential Equations. Boca Raton: Chapmen and Hall/CRC, 2000

    MATH  Google Scholar 

  9. Amann H. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math Nachr, 186: 5–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aubin J P. Abstract boundary-value operators and their adjoint. Rend Sem Mat Univ Padova, 43: 1–33 (1970)

    MathSciNet  MATH  Google Scholar 

  11. Ashyralyev A. On well-posedeness of the nonlocal boundary value problem for elliptic equations. Numer Funct Anal Optim, 24(1–2): 1–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shakhmurov V B. Theorems about of compact embedding and applications. Dokl Akad Nauk SSSR, 241(6): 1285–1288 (1978)

    MathSciNet  Google Scholar 

  13. Shakhmurov V B. Imbedding theorems and their applications to degenerate equations. Differ Equ, 24(4): 475–482 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Shakhmurov V B. Imbedding theorems for abstract function spaces and their applications. Math USSR-Sbornik, 134(1–2): 261–276 (1987)

    MathSciNet  Google Scholar 

  15. Shakhmurov V B. Coercive boundary value problems for strongly degenerating abstract equations. Dokl Akad Nauk SSSR, 290(3): 553–556 (1986)

    MathSciNet  Google Scholar 

  16. Shakhmurov V B. Embedding theorems and maximal regular differential operator equations in Banach-valued function spaces. Inequal Appl, 4(2): 329–345 (2005)

    Article  MathSciNet  Google Scholar 

  17. Shakhmurov V B. Coercive boundary value problems for regular degenerate differential-operator equations. J Math Anal Appl, 292(2): 605–620 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North-Holland, 1978

    Google Scholar 

  19. Burkholder D L. A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions. Proc Conf Harmonic Analysis in Honor of Antonu Zigmund, Chicago, 1981. Belmont: Wadsworth, 1983, 270–286

    Google Scholar 

  20. Bourgain J. Some remarks on Banach spaces in which martingale differences are unconditional. Ark Mat, 21: 163–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Clement P, de Pagter B, Sukochev F A, et al. Schauder decomposition and multiplier theorems. Studia Math, 138: 135–163 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Denk R, Hieber M, Prüss J. R-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem Amer Math Soc, Vol. 166, No. 788. Providence: Amer Math Soc, 2003

    Google Scholar 

  23. Lizorkin P I. (L p, L q)-multiplicators of Fourier integrals. Dokl Akad Nauk SSSR, 152(4): 808–811 (1963)

    MathSciNet  Google Scholar 

  24. McConnell T R. On Fourier multiplier transformations of Banach-valued functions. Trans Amer Math Soc, 285(2): 739–757 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Strkalj Z, Weis L. Operator-valued Fourier multiplier theorems. Preprint, 2000

  26. Pisier G. Les inegalites de Khintchine-Kahane d’apres C Borel, Seminare sur la geometrie des espaces de Banach 7. Paris: Ecole Polytechnique, 1977–1978

    Google Scholar 

  27. Haller R, Heck H, Noll A. Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math Nachr, 244: 110–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lamberton D. Equations d’evalution lineaires associeees a’des semigroupes de contractions dans less espaces L p. J Funct Anal, 72: 252–262 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dore G, Venni A. On the closedness of the sum of two closed operators. Math Z, 196: 189–201 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lizorkin P I, Shakhmurov V B. Embedding theorems for classes of vector-valued functions. Izv Vyssh Uchebn Zaved Mat, 1: 70–78 (1989); 2: 47–54 (1989)

    MathSciNet  Google Scholar 

  31. Lions J L, Peetre J. Sur une classe d’espaces d’interpolation. Publ Math Inst Hautes Etudes Sci, 19: 5–68 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  32. Favini A. Su un problema ai limit per certa equazini astratte del secondo ordine. Rend Sem Mat Univ Padova, 53: 211–230 (1975)

    MathSciNet  Google Scholar 

  33. Besov O V, Ilin V P, Nikolskii S M. Integral Representations of Functions and Embedding Theorems. Moscow: Nauka, 1975

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhmurov, V.B. Carleman estimates and unique continuation property for the anisotropic differential-operator equations. Sci. China Ser. A-Math. 51, 1215–1231 (2008). https://doi.org/10.1007/s11425-008-0001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-008-0001-7

Keywords

MSC(2000)

Navigation