Skip to main content
Log in

Reducibility of hyperplane arrangements

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Certain problems on reducibility of central hyperplane arrangements are settled. Firstly, a necessary and sufficient condition on reducibility is obtained. More precisely, it is proved that the number of irreducible components of a central hyperplane arrangement equals the dimension of the space consisting of the logarithmic derivations of the arrangement with degree zero or one. Secondly, it is proved that the decomposition of an arrangement into a direct sum of its irreducible components is unique up to an isomorphism of the ambient space. Thirdly, an effective algorithm for determining the number of irreducible components and decomposing an arrangement into a direct sum of its irreducible components is offered. This algorithm can decide whether an arrangement is reducible, and if it is the case, what the defining equations of irreducible components are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orlik P, Terao H. Arrangements of Hyperplanes. Berlin-Heidelberg: Springer-Verlag, 1992

    MATH  Google Scholar 

  2. Cordovil R. On the center of the fundamental group of the complement of a hyperplane arrangement. Portugaliae Mathematica, 51: 363–373 (1994)

    MATH  MathSciNet  Google Scholar 

  3. Cohen D, Suciu A. On Milnor fibrations of arrangements. J Lodon Math Soc, 51: 105–119 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Cohen D, Orlik P. Some cyclic covers of complements of arrangements. Topology & Appl, 118: 3–15 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen D, Orlik P. Gauss-Manin connections for arrangements, I. Eigenvalues. Compositio Math, 136:299–316 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen D, Orlik P. Gauss-Manin connections for arrangements, II. Nonresonant weights. Amer J Math, 127: 569–594 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen D, Orlik P. Gauss-Manin connections for arrangements, III. Formal connections. Trans Amer Math Soc, 357: 3031–3050 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen D, Orlik P. Gauss-Manin connections for arrangements, IV. Nonresonant eigenvalus. Comment Math Helv, 81(4): 883–909 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aomoto A, Kita M. Hypergeometric Functions (in Japanese). Tokyo: Springer-Verlag, 1994

    Google Scholar 

  10. Orlik P, Terao H. Arrangements and hypergeometric integrals. MSJ Memoir 9, Tokyo: Mathematical Society of Japan, 2001

    MATH  Google Scholar 

  11. Schechtman V, Varchenko A N. Arrangements of hyperplanes and Lie algebra homology. Invent Math, 106:139–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Varchenko A N. Multidimensional hypergeometric functions and representation theory of Lie groups. Advanced Studies in Mathematical Physics. Vol. 21, Singapore: World Scientific Publishers, 1995

    MATH  Google Scholar 

  13. Esnault H, Schechtman V, Viehweg E. Cohomology of local systems of the complement of hyperplanes. Invent Math, 109: 557–561 (1992); Erratum, ibid. 112: 447 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schechtman V, Terao H, Varchenko A N. Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors. J Pure and App Alg, 100: 93–102 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Falk M, Terao H. β nbc-bases for cohomology of local systems on hyperplane complements. Trans Amer Math Soc, 349: 189–202 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Aramova A, Avramov L A, Herzog J. Resolutions of monomial ideals and cohomology over exterior algebras. Trans Amer Math Soc, 352: 579–594 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eisenbud D, Popescu S, Yuzvinsky S. Hyperplane arrangements cohomology and monomials in the exterior algebra. Trans Amer Math Soc, 355(11): 4365–4383 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yuzvinsky S. Orlik-Solomon algebra in algebra and topology. Russian Math Surveys, 56(2): 293–364 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Crapo H. A higher invariant for matroids. J Combinatorial Theory, 2: 406–417 (1967)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-feng Jiang.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant No. 10671009)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Gf., Yu, Jm. Reducibility of hyperplane arrangements. SCI CHINA SER A 50, 689–697 (2007). https://doi.org/10.1007/s11425-007-2075-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-007-2075-z

Keywords

MSC(2000)

Navigation