Skip to main content
Log in

Robust Finite-Time Stability and Stabilization of a Class of Fractional-Order Switched Nonlinear Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper deals with the problem of finite-time boundedness and finite-time stabilization boundedness of fractional-order switched nonlinear systems with exogenous inputs. By constructing a simple Lyapunov-like function and using some properties of Caputo derivative, the authors obtain some new sufficient conditions for the problem via linear matrix inequalities, which can be efficiently solved by using existing convex algorithms. A constructive geometric is used to design switching laws amongst the subsystems. The obtained results are more general and useful than some existing works, and cover them as special cases, in which only linear fractional-order systems were presented. Numerical examples are provided to demonstrate the effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liberzon D, Switching in Systems and Control, Birkhauser, Boston, 2003.

    Book  MATH  Google Scholar 

  2. Sun Z and Ge S S, Switched Linear Systems: Control and Design, Springer, London, 2005.

    Book  MATH  Google Scholar 

  3. Wang J, Lian S, and Shi Y Q, Hybrid multiplicative multi-watermarking in DWT domain, Multidim. Syst. Sign. Process., 2017. 28(2): 617–636.

    Article  MATH  Google Scholar 

  4. Phat V N, Switched controller design for stabilization of nonlinear hybrid systems with time-varying delays in state and control, J. Frankl. Inst., 2010. 347: 195–207.

    Article  MathSciNet  MATH  Google Scholar 

  5. Geromel J C, Colaneri P, and Bolzern P, Passivity of switched linear systems: Analysis and control design, Systems Control Lett., 2012. 61: 549–554.

    Article  MathSciNet  MATH  Google Scholar 

  6. Niu B and Zhao J, Robust H control for a class of switched nonlinear systems with average dwell time, Int. J. Control. 2013 86(6): 1107–1117.

    Article  MATH  Google Scholar 

  7. Thuan M V, Trinh H, and Huong D C, Reachable sets bounding for switched systems with time-varying delay and bounded disturbances, Int. J. Syst. Sci.. 2017 48(3): 494–504.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kermani M and Sakly A, On the stability analysis of switched nonlinear systems with time varying delay under arbitrary switching, Journal of Systems Science and Complexity, 2017. 30(2): 329–346.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dorato P, Short time stability in linear time-varying systems, P roceedin gs of the IRE Intern ati on al Convention Record Part 4, New York, 1961. 83–87.

    Google Scholar 

  10. Weiss L and Infante E F, Finite time stability under perturbing forces and on product spaces, IEEE Trans. Automat. Contr.. 1967, 12(1): 54–59.

    Article  MathSciNet  MATH  Google Scholar 

  11. Amato F, Ariola M, and Cosentino C, Finite-time stabilization via dynamic output feedback, Automatica. 2006 42(2): 337–342.

    Article  MathSciNet  MATH  Google Scholar 

  12. Amato F, Ambrosino R, Cosentino C, et al., Input-output finite time stabilization of linear system, Automatica. 2010, 46(9): 1558–1562.

    Article  MathSciNet  MATH  Google Scholar 

  13. Amato F, Carannante G, De Tommasi G, et al., Input-output finite-time stability of linear systems: Necessary and sufficient conditions, IEEE Trans. Automat. Contr.. 2012, 57(12): 3051–3063.

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu H, Shen Y, and Zhao X, Finite-time stabilization and boundedness of switched linear system under state-dependent switching, J. Frankl. Inst.. 2013, 350(3): 541–555.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao G and Wang J, Finite time stability and L 2-gain analysis for switched linear systems with state-dependent switching, J. Frankl. Inst.. 2013, 350(5): 1075–1092.

    Article  MATH  Google Scholar 

  16. Lin X, Li S, and Zou Y, Finite-time stability of switched linear systems with subsystems which are not finite-time stable, IET Control Theory Appl.. 2014, 8(12): 1137–1146.

    Article  MathSciNet  Google Scholar 

  17. Li X, Lin X, Li S, et al., Finite-time stability of switched nonlinear systems with finite-time unstable subsystems, J. Frankl. Inst.. 2015, 352(3): 1192–1214.

    Article  MathSciNet  MATH  Google Scholar 

  18. Yan Z, Zhang G, Wang J, et al., State and output feedback finite-time guaranteed cost control of linear it stochastic systems, Journal of Systems Science and Complexity. 2015, 28(4): 813–829.

    Article  MathSciNet  MATH  Google Scholar 

  19. He H, Gao X, and Qi W, Finite-time L 2 - L control for stochastic asynchronously switched systems with time-varying delay and nonlinearity, Circuits Syst. Signal Process, 2018, 37(1): 112–134.

    Article  MATH  Google Scholar 

  20. Hilfer R, Application of Fractional Calculus in Physics, World Science Publishing, Singapore, 2000.

    Book  MATH  Google Scholar 

  21. Cheng S, Wei Y, Chen Y, et al., Fractional-order multivariable composite model reference adaptive control, Int. J. Adapt. Control Signal Process.. 2017, 31(10): 1467–1480.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng S, Wei Y, Chen Y, et al., An innovative fractional order LMS based on variable initial value and gradient order, Signal Process., 2017. 133: 260–269.

    Article  Google Scholar 

  23. Cheng S, Wei Y, Chen Y, et al., A universal modified LMS algorithm with iteration order hybrid switching, ISA Transactions, 2017. 67: 67–75.

    Article  Google Scholar 

  24. Podlubny I, Fractional Diffrential Equations, Academic Press, New York, 1999.

    MATH  Google Scholar 

  25. Kilbas A, Srivastava H, and Trujillo J, Theory and Application of Fractional Diffrential Equations, Elsevier, New York, 2006.

    Google Scholar 

  26. Chen Y, Chen Y Q, and Podlubny L, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl.. 2010 59(5): 1810–1821.

    Article  MathSciNet  MATH  Google Scholar 

  27. Wen Y, Zhou X F, and Zhang Z, Lyapunov method for nonlinear fractional differential systems with delay, Nonlinear Dyn., 2015. 82: 1015–1025.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang S, Yu Y, and Yu J, LMI conditions for global stability of fractional-order neural networks, IEEE Trans. Neural Netw. Learn. Syst.. 2017 28(10): 2423–2433.

    Article  MathSciNet  Google Scholar 

  29. Benzaouia A and El Hajjaji A, Stabilization of continuous-time fractional positive T-S fuzzy systems by using a Lyapunov function, Circuits Syst. Signal Process. 2017 36(10): 3944–3957.

    Article  MATH  Google Scholar 

  30. Thuan M V and Huong D C, New results on stabilization of fractional-order nonlinear systems via an LMI approach, Asian Journal of Control. 2018, 20(5): 1–10.

    MathSciNet  MATH  Google Scholar 

  31. Radwan A G, Moaddy K, Salama K N, et al., Control and switching synchronization of fractional order chaotic systems using active control technique, J. Adv. Res.. 2014 5(1): 125–132.

    Article  Google Scholar 

  32. Balochian S and Sedigh A K, Sufficient condition for stabilization of linear time invariant fractional order switched systems and variable structure control stabilizers, ISA Trans., 2012 51(1): 65–73.

    Article  Google Scholar 

  33. HosseinNia S H, Tejado I, and Vinagre M M, Stability of fractional order switching systems, Comput. Math. Appl.. 2013, 66(5): 585–596.

    Article  MathSciNet  MATH  Google Scholar 

  34. Balochian S, On the stabilization of linear time invariant fractional order commensurate switched systems, Asian J. Control. 2015, 17(1): 133–141.

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen G and Yang Y, Stability of a class of nonlinear fractional order impulsive switched systems, Trans. Int. Meas. Control. 2017 39(5): 781–790.

    Google Scholar 

  36. Yang H and Jiang B, Stability of fractional-order switched non-linear systems, IET Control Theory Appl.. 2016, 10(8): 965–970.

    Article  MathSciNet  Google Scholar 

  37. Yang Y and Chen G, Finite-time stability of fractional order impulsive switched systems, Int. J. Robust Nonlinear Control. 2015, 25(13): 2207–2222.

    Article  MathSciNet  MATH  Google Scholar 

  38. Tarasov V E, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul.. 2013, 18(11): 2945–2948.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang J, Zhao X, and Chen Y, Finite-time stability and stabilization of fractional order positive switched systems, Circuits Syst. Signal Process, 2016. 35: 2450–2470.

    Article  MathSciNet  MATH  Google Scholar 

  40. Boyd S, Ghaoui L E, Feron E, et al., Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.

    Book  MATH  Google Scholar 

  41. Deng W, Chen R, He B, et al., A novel two-stage hybrid swarm intelligence optimization algorithm and application, Soft Comput.. 2012, 16(10): 1707–1722.

    Article  Google Scholar 

  42. Yuan C, Sun X, and Luü R, Fingerprint liveness detection based on multi-scale LPQ and PCA, China Communications. 2016, 13(7): 60–65.

    Article  Google Scholar 

  43. Gu B and Sheng V S, A robust regularization path algorithm for ν-support vector classification, IEEE Trans. Neural Netw. Learn. Syst.. 2017, 28(5): 1241–1248

    Article  Google Scholar 

  44. Gu B, Sun X, and Sheng V S, Structural minimax probability machine, IEEE Trans. Neural Netw. Learn. Syst.. 2017, 28(7): 1646–1656.

    Article  MathSciNet  Google Scholar 

  45. Zhao H, Sun M, Deng W, et al., A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing, Entropy, 2017. 19(1): 14, DOI: 10.3390/e19010014.

    Article  Google Scholar 

  46. Zhao H M, Li D Y, Deng W, et al., Research on vibration suppression method of alternating current motor based on fractional order control strategy, Proc. IMechE Part E: J. Process Mechanical Engineering. 2017, 231(3): 786–799.

    Google Scholar 

  47. Deng W, Zhao H, Zou L, et al., A novel collaborative optimization algorithm in solving complex optimization problems, Soft Comput.. 2017, 21(15): 4387–4398.

    Article  Google Scholar 

  48. Deng W, Zhao H, Yang X, et al., Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment, Applied Soft Computing, 2017. 59: 288–302.

    Article  Google Scholar 

  49. Xue Y, Jiang J, Zhao B, et al., A self-adaptive artificial bee colony algorithm based on global best for global optimization, Soft Comput.. 2018, 22(9): 2935–2952.

    Article  Google Scholar 

  50. Deng W, Yao R, Zhao H, et al., A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm, Soft Comput.. 2019, 23(7): 2445–2462.

    Article  Google Scholar 

  51. Xiong L, Xu Z, and Shi Y Q, An integer wavelet transform based scheme for reversible data hiding in encrypted images, Multidim. Syst. Sign. Process, 2018, 29 (3): 1191–1202.

    Google Scholar 

  52. Kim S, Campbell S A, and Liu X, Stability of a class of linear switching systems with time delay, IEEE Transactions on Circuits and Systems I: Regular Papers. 2006, 53(2): 384–393.

    Article  MathSciNet  MATH  Google Scholar 

  53. Li C and Deng W, Remarks on fractional derivatives, Appl. Math. Comput., 2007. 187(2): 777–784.

    MathSciNet  MATH  Google Scholar 

  54. Duarte-Mermoud M A, Aguila-Camacho N, Gallegos J A, et al., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 2015. 22(1-3): 650–659.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ma Y, Wu B, and Wang Y E, Finite-time stability and finite-time boundedness of fractional order linear systems, Neurocomputing, 2016. 173: 2076–2082.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Thuan Mai.

Additional information

The research of DINH Cong Huong is funded by the Ministry of Education and Training of Vietnam under Grant No. TN-487, led by Assoc. Prof. Phan Thanh Nam, Quy Nhon University, Decision number 5650/QD-BGDDT 28/12/2018.

This paper was recommended for publication by Editor SUN Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, V.T., Dinh, C.H. Robust Finite-Time Stability and Stabilization of a Class of Fractional-Order Switched Nonlinear Systems. J Syst Sci Complex 32, 1479–1497 (2019). https://doi.org/10.1007/s11424-019-7394-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-7394-y

Keywords

Navigation