Skip to main content
Log in

Lyapunov method for nonlinear fractional differential systems with delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the stability of nonlinear fractional differential systems with delay. Based on the Lyapunov functional method and the Lyapunov function method, respectively, several stability criteria including Razumikhin-type stability criteria are derived, which are extensions of some existed results of the Hale and Verduyn Lunel (Introduction to functional differential equations. Springer, Berlin, 1993), Aguila-Camacho et al. (Commun Nonlinear Sci Numer Simul 19, 2951–2957, 2014) and Zhou et al. (Appl Math Lett 28, 25–29, 2014). In addition, some examples are provided to illustrate the applications of these criteria. Numerical simulations show the validity of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1993)

    Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdan (2006)

    MATH  Google Scholar 

  4. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  5. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  6. Zhou, Y.: Basic Theorem of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  7. Chauhan, A., Dabas, J.: Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition. Commun. Nonlinear Sci. Numer. Simul. 19, 821–829 (2014)

    Article  MathSciNet  Google Scholar 

  8. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay. Nonlinear Anal. 71, 3249–3265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Agarwal, R.P., Zhou, Y., He, Y.: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095–1100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J.R., Zhou, Y.: Existence of mild solutions for fractional delay evolution systems. Appl. Math. Comput. 218, 357–367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, J., Deng, Z., Yang, L.: An existence and uniqueness result for fractional order semilinear functional differential equations with nondense domain. Appl. Math. Lett. 24, 924–928 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, Z., Cao, J.: Initial value problems for arbitrary order fractional differential equations with delay. Commun. Nonlinear Sci. Numer. Simul. 18, 2993–3005 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jankowski, T.: Existence results to delay fractional differential equations with nonlinear boundary conditions. Appl. Math. Comput. 219, 9155–9164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y., Moore, K.L.: Analytical stability bounded for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lazarević, M.P.: Finite time stability analysis of \(PD^{\alpha }\) fractional control of robotic time-delay systems. Mech. Res. Commun. 33, 269–279 (2006)

    Article  MATH  Google Scholar 

  17. Kaslik, E., Sivasundaram, S.: Analytical and numerical methods for the stability analysis of linear fractional delay differential equation. J. Comput. Appl. Math. 236, 4027–4041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mesbahi, A., Haeri, M.: Stability of linear ime invariant fractional delay systems of retardee type in the space of delay parameters. Automatica 49, 1287–1294 (2013)

    Article  MathSciNet  Google Scholar 

  19. Lakshmikantham, V.: Theorem of fractional functional differential equations. Nonlinear Anal. 69, 3337–3343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, S., Li, X., Jiang, W., et al.: Mittag–Leffler stability of nonlinear fractional neutral singular systems. Commun. Nonlinear Sci. Numer. Simul. 17, 3961–3966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou, Y., Jiao, F., Pecaric, J.: On the Cauchy problem for fractional functional differential equations in Banach spaces. Topol. Methods Nonlinear Anal. 42, 119–136 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Bhallekar, S.B.: Stability analysis of a class of fractional delay differential equations. J. Phys. 81(2), 215–224 (2013)

    Google Scholar 

  23. Gao, Z.: A graphic stability criterion for non-commensurate fractional-order time-delay systems. Nonlinear Dyn. 78, 2101–2111 (2014)

    Article  Google Scholar 

  24. Stamova, I.: Global Mittag–Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 77, 1251–1260 (2014)

    Article  MathSciNet  Google Scholar 

  25. Hu, J.-B., Lu, G.-P., Zhang, S.-B., Zhao, L.-D.: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20, 905–913 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Y., Chen, Y., Pudlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhou, X.-F., Hu, L.-G., Liu, S., et al.: Stability criterion for a class of nonlinear fractional differential systems. Appl. Math. Lett. 28, 25–29 (2014)

    Article  MathSciNet  Google Scholar 

  29. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  30. Yu, L., Fei, S.: Robustly stable switching neural control of robotic manipulators using average dwell-time approach. Trans. Inst. Meas. Control 36, 789–796 (2014)

    Article  Google Scholar 

  31. Yu, L., Fei, S., Sun, L., et al.: Design of robust adaptive neural switching controller for robotic manipulators with uncertainty and disturbances. J. Intell. Robot. Syst. 77, 571–581 (2015)

    Article  Google Scholar 

  32. Yu, L., Fei, S., Sun, L., et al.: Fuzzy approximation of a novel nonlinear adaptive switching controller design. Circuits Syst. Signal Process. 34, 377–391 (2015)

    Article  MathSciNet  Google Scholar 

  33. Diethelm, K., Ford, N.J., Freed, A.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and suggestions, which improve the quality of this paper. This paper is supported by National Natural Science Foundation of China (11371027, 11471015), Natural Science Foundation of Anhui Province (1508085MA01), Research Fund for Doctoral Program of Higher Education of China (20123401120001, 20133401120013), Natural Science Foundation for Colleges and Universities of Anhui Province (KJ2012A032) and The Program of Academic Innovation Research for Postgraduate of Anhui University (yfc100013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhou, XF., Zhang, Z. et al. Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dyn 82, 1015–1025 (2015). https://doi.org/10.1007/s11071-015-2214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2214-y

Keywords

Navigation