Skip to main content

Advertisement

Log in

Finite Element Analysis Examining the Effects of Cam FAI on Hip Joint Mechanical Loading Using Subject-Specific Geometries During Standing and Maximum Squat

  • Current Topics Concerning Joint Preservation and Minimally Invasive Surgery of the Hip
  • Published:
HSS Journal ®

Abstract

Background:

Cam femoroacetabular impingement (FAI) can impose elevated mechanical loading in the hip, potentially leading to an eventual mechanical failure of the joint. Since in vivo data on the pathomechanisms of FAI are limited, it is still unclear how this deformity leads to osteoarthritis.

Purpose:

The purpose of this study was to examine the effects of cam FAI on hip joint mechanical loading using finite element analysis, by incorporating subject-specific geometries, kinematics, and kinetics.

Questions:

The research objectives were to address and determine: (1) if hips with cam FAI demonstrate higher maximum shear stresses, in comparison with control hips; (2) the magnitude of the peak maximum shear stresses; and (3) the locations of the peak maximum shear stresses.

Methods:

Using finite element analysis, two patient models were control-matched and simulated during quasi-static positions from standing to squatting. Intersegmental hip forces, from a previous study, were applied to the subject-specific hip geometries, segmented from CT data, to evaluate the maximum shear stresses on the acetabular cartilage and underlying bone.

Results:

Peak maximum shear stresses were found at the anterosuperior region of the underlying bone during squatting. The peaks at the anterosuperior acetabulum were substantially higher for the patients (15.2 ± 1.8 MPa) in comparison with the controls (4.5 ± 0.1 MPa).

Conclusions:

Peaks were not situated on the cartilage, but instead located on the underlying bone. The results correspond with the locations of initial cartilage degradation observed during surgical treatment and from MRI.

Clinical Relevance:

These findings support the pathomechanism of cam FAI. Changes may originate from the underlying subchondral bone properties rather than direct shear stresses to the articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008;130(5):051008.

    Article  PubMed  Google Scholar 

  2. Anderson AE, Ellis BJ, Maas SA, Weiss JA. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech. 2010;43(7):1351–7.

    Article  PubMed  Google Scholar 

  3. Arbabi E, Boulic R, Thalmann D. Fast collision detection methods for joint surfaces. J Biomech. 2009;42(2):91–9.

    Article  PubMed  Google Scholar 

  4. Aritan S, Dabnichki P, Bartlett R. Program for generation of three-dimensional finite element mesh from magnetic resonance imaging scans of human limbs. Med Eng Phys. 1997;19(8):681–9.

    Article  PubMed  CAS  Google Scholar 

  5. Ateshian GA, Ellis BJ, Weiss JA. Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng. 2007;129(3):405–12.

    Article  PubMed  Google Scholar 

  6. Beaule PE, Zaragoza E, Motamedi K, Copelan N, Dorey FJ. Three-dimensional computed tomography of the hip in the assessment of femoroacetabular impingement. J Orthop Res. 2005;23(6):1286–92.

    PubMed  Google Scholar 

  7. Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg. 2005;87(7):1012–8.

    Article  CAS  Google Scholar 

  8. Buchanan TS, Lloyd DG, Manal K, Besier TF. Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med Sci Sports Exerc. 2005;37(11):1911–6.

    Article  PubMed  Google Scholar 

  9. Chegini S, Beck M, Ferguson SJ. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis. J Orthop Res. 2009;27(2):195–201.

    Article  PubMed  Google Scholar 

  10. Clohisy JC, McClure JT. Treatment of anterior femoroacetabular impingement with combined hip arthroscopy and limited anterior decompression. Iowa Orthop J. 2005;25:164–71.

    PubMed  Google Scholar 

  11. Couteau B, Hobatho MC, Darmana R, Brignola JC, Arlaud JY. Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties. J Biomech. 1998;31(4):383–6.

    Article  PubMed  CAS  Google Scholar 

  12. Day JS, Van Der Linden JC, Bank RA, Ding M, Hvid I, Sumner DR, et al. Adaptation of subchondral bone in osteoarthritis. Biorheology. 2004;41(3–4):359–68.

    PubMed  CAS  Google Scholar 

  13. Ferguson SJ, Bryant JT, Ganz R, Ito K. The acetabular labrum seal: a poroelastic finite element model. Clin Biomech (Bristol, Avon). 2000;15(6):463–8.

    Article  CAS  Google Scholar 

  14. Ferguson SJ, Bryant JT, Ganz R, Ito K. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech. 2000;33(8):953–60.

    Article  PubMed  CAS  Google Scholar 

  15. Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;466(2):264–72.

    Article  PubMed  Google Scholar 

  16. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.

    PubMed  Google Scholar 

  17. Gilbert JL. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes. J Biomed Mater Res A. 2006;79(4):999–1014.

    PubMed  Google Scholar 

  18. Gosvig KK, Jacobsen S, Sonne-Holm S, Gebuhr P. The prevalence of cam-type deformity of the hip joint: A survey of 4151 subjects of the copenhagen osteoarthritis study. Acta Radiologica. 2008;49(4):436–41.

    Article  PubMed  CAS  Google Scholar 

  19. Henak CR, Ellis BJ, Harris MD, Anderson AE, Peters CL, Weiss JA. Role of the acetabular labrum in load support across the hip joint. J Biomech. 2011;44(12):2201–6.

    Article  PubMed  Google Scholar 

  20. Hlavacek M. The thixotropic effect of the synovial fluid in squeeze-film lubrication of the human hip joint. Biorheology. 2001;38(4):319–34.

    PubMed  CAS  Google Scholar 

  21. Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405(6787):704–6.

    Article  PubMed  CAS  Google Scholar 

  22. Ito K, Minka MA, 2nd, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg. 2001;83(2):171–6.

    Article  CAS  Google Scholar 

  23. Johnson GA, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL. Tensile and viscoelastic properties of human patellar tendon. J Orthop Res. 1994;12(6):796–803.

    Article  PubMed  CAS  Google Scholar 

  24. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383–92.

    Article  PubMed  CAS  Google Scholar 

  25. Konrath GA, Hamel AJ, Olson SA, Bay B, Sharkey NA. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip. J Bone Joint Surg Am. 1998;80(12):1781–8.

    PubMed  CAS  Google Scholar 

  26. Lamontagne M, Kennedy MJ, Beaule PE. The effect of cam FAI on hip and pelvic motion during maximum squat. Clin Orthop Relat Res. 2009;467(3):645–50.

    Article  PubMed  Google Scholar 

  27. Leunig M, Beaule PE, Ganz R. The concept of femoroacetabular impingement: current status and future perspectives. Clin Orthop Relat Res. 2009;467(3):616–22.

    Article  PubMed  Google Scholar 

  28. Leunig M, Beck M, Dora C, Ganz R. Femoroacetabular Impingement: Etiology and Surgical Concept. Oper Tech Orthop. 2005;15:247–55.

    Article  Google Scholar 

  29. Lloyd DG, Buchanan TS, Besier TF. Neuromuscular biomechanical modeling to understand knee ligament loading. Med Sci Sports Exerc. 2005;37(11):1939–47.

    Article  PubMed  Google Scholar 

  30. Luo Y. 3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis. Adv Theor Appl Mech. 2008;1(3):131–9.

    Google Scholar 

  31. Macirowski T, Tepic S, Mann RW. Cartilage stresses in the human hip joint. J Biomech Eng. 1994;116(1):10–8.

    Article  PubMed  CAS  Google Scholar 

  32. Manal K, Gonzalez RV, Lloyd DG, Buchanan TS. A real-time EMG-driven virtual arm. Comput Biol Med. 2002;32(1):25–36.

    Article  PubMed  Google Scholar 

  33. Murphy MJ. The importance of computed tomography slice thickness in radiographic patient positioning for radiosurgery. Med Phys. 1999;26(2):171–5.

    Article  PubMed  CAS  Google Scholar 

  34. Myers SR, Eijer H, Ganz R. Anterior femoroacetabular impingement after periacetabular osteotomy. Clin Orthop Relat Res. 1999;(363):93–9.

    Article  PubMed  Google Scholar 

  35. Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg. 2002;84(4):556–60.

    Article  CAS  Google Scholar 

  36. Radin EL, Paul IL, Tolkoff MJ. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum. 1970;13(4):400–5.

    Article  PubMed  CAS  Google Scholar 

  37. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;(213):34–40.

    PubMed  Google Scholar 

  38. Russell ME, Shivanna KH, Grosland NM, Pedersen DR. Cartilage contact pressure elevations in dysplastic hips: a chronic overload model. J Orthop Surg Res. 2006;1:6.

    Article  PubMed  Google Scholar 

  39. Shaffer E, Garland M. A multiresolution representation for massive meshes. IEEE Trans Vis Comput Graph. 2005;11(2):139–48.

    Article  PubMed  Google Scholar 

  40. Siebenrock KA, Wahab KH, Werlen S, Kalhor M, Leunig M, Ganz R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res. 2004;(418):54–60.

    Article  PubMed  Google Scholar 

  41. Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–52.

    Article  PubMed  Google Scholar 

  42. Vahdati A, Rouhi G. A model for mechanical adaptation of trabecular bone incorporating cellular accommodation and effects of microdamage and disuse. Mech Res Comm. 2009;36(3):284–293.

    Google Scholar 

  43. Wei HW, Sun SS, Jao SH, Yeh CR, Cheng CK. The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Med Eng Phys. 2005;27(4):295–304.

    Article  PubMed  Google Scholar 

  44. Yoshida H, Faust A, Wilckens J, Kitagawa M, Fetto J, Chao EY. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech. 2006;39(11):1996–2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Matthew J. Kennedy, research associate of the Human Movement Biomechanics Laboratory at the University of Ottawa; Andrew D. Speirs MD, research engineer of the Division of Orthopaedic Surgery at the Ottawa Hospital; and Michel R. Labrosse, director of the Ottawa-Carleton Institute for Biomedical Engineering, for their research contributions and insight. The authors wish to also acknowledge the funding contributions from the Hans K. Uhthoff Graduate Fellowship Award and the Canadian Institutes of Health Research.

Disclosures

One or more authors (ML and PB) have received funding from the Canadian Institutes of Health Research. One and more of the authors (PB) has or may receive payments or benefits from a commercial entity (Wright Medical Technology, Medacta) that may be perceived as a potential conflict of interest.

Each author certifies that his or her institution has approved the reporting of this study, and that all investigations were conducted in conformity with ethical principles of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Lamontagne PhD.

Additional information

The investigation was performed at the University of Ottawa, Human Movement Biomechanics Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K.C.G., Rouhi, G., Lamontagne, M. et al. Finite Element Analysis Examining the Effects of Cam FAI on Hip Joint Mechanical Loading Using Subject-Specific Geometries During Standing and Maximum Squat. HSS Jrnl 8, 206–212 (2012). https://doi.org/10.1007/s11420-012-9292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11420-012-9292-x

Keywords

Navigation