Noninvasive Quantitative Assessment of Bone Healing After Distraction Osteogenesis

Abstract

One of the greatest challenges of limb lengthening and deformity correction is deciding when the bone has healed enough to remove the external fixator. Standard radiography is the most common imaging method used to assess bone healing after distraction osteogenesis because it is widely available, cheap, and relatively safe. However, other imaging technologies and methods are being investigated that will help quantify bone healing after distraction osteogenesis, providing an objective method for deciding when it is appropriate to remove an external fixator. This review will examine the latest techniques used to assess bone healing after distraction osteogenesis including dual-energy X-ray absorptiometry scans, ultrasound, quantitative computed tomography, and digital radiography (X-ray). Recommendations for clinical practice will be outlined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Codivilla A (1994) On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. 1904. Clin. Orthop. Relat. Res 301:4–9

    PubMed  Google Scholar 

  2. 2.

    Bertram C, Nielander KH, Konig DP (1999) Pioneers in the lengthening of the extremities. Chirurg 70 no. 11, 1374–1378

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Birch JG, Samchukov ML (2004) Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J. Am. Acad. Orthop. Surg. 12 no. 3, 144–154

    PubMed  Google Scholar 

  4. 4.

    Fragomen AT, Rozbruch SR (2007) The mechanics of external fixation. HSS J. 3 no. 1, 13–29

    Article  PubMed  Google Scholar 

  5. 5.

    Marsh DR, Shah S, Elliott J, Kurdy N (1997) The Ilizarov method in nonunion, malunion and infection of fractures. J. Bone Jt. Surg. Br. 79 no. 2, 273–279

    Article  CAS  Google Scholar 

  6. 6.

    Paley D, Herzenberg JE, Paremain G, Bhave A (1997) Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J. Bone Jt. Surg. Am. 79 no. 10, 1464–1480

    CAS  Google Scholar 

  7. 7.

    Velazquez RJ, Bell DF, Armstrong PF, Babyn P, Tibshirani R (1993) Complications of use of the Ilizarov technique in the correction of limb deformities in children. J. Bone Jt. Surg. Am 75 no. 8, 1148–1156

    CAS  Google Scholar 

  8. 8.

    Cattermole HC, Cook JE, Fordham JN, Muckle DS, Cunningham JL (1997) Bone mineral changes during tibial fracture healing. Clin. Orthop. Relat. Res 339:190–196

    Article  PubMed  Google Scholar 

  9. 9.

    Garcia-Cimbrelo E, Olsen B, Ruiz-Yague M, Fernandez-Baillo N, Munuera-Martinez L (1992) Ilizarov technique. Results and difficulties. Clin. Orthop. Relat. Res. 283:116–123

    PubMed  Google Scholar 

  10. 10.

    Eldridge JC, Bell DF (1991) Problems with substantial limb lengthening. Orthop. Clin. North Am. 22 no. 4, 625–631

    CAS  PubMed  Google Scholar 

  11. 11.

    Ghoneem HF, Wright JG, Cole WG, Rang M (1996) The Ilizarov method for correction of complex deformities. Psychological and functional outcomes. J. Bone Jt. Surg. Am. 78 no. 10, 1480–1485

    CAS  Google Scholar 

  12. 12.

    Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin. Orthop. Relat. Res. 250:8–26

    PubMed  Google Scholar 

  13. 13.

    Rozbruch SR, Kleinman D, Fragomen AT, Ilizarov S (2008) Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin. Orthop. Relat. Res. 466:2923–2932

    Article  PubMed  Google Scholar 

  14. 14.

    Dinah AF (2004) Predicting duration of Ilizarov frame treatment for tibial lengthening. Bone 34 no. 5, 845–848

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Fischgrund J, Paley D, Suter C (1994) Variables affecting time to bone healing during limb lengthening. Clin. Orthop. Relat. Res. 301:31–37

    PubMed  Google Scholar 

  16. 16.

    Anand A, Feldman DS, Patel RJ, Lehman WB, Bosse HJvan, Badra MI, Sala DA (2006) Interobserver and intraobserver reliability of radiographic evidence of bone healing at osteotomy sites. J. Pediatr. Orthop. B. 15 no. 4, 271–272

    PubMed  Google Scholar 

  17. 17.

    Starr KA, Fillman R, Raney EM (2004) Reliability of radiographic assessment of distraction osteogenesis site. J. Pediatr. Orthop. 24 no. 1, 26–29

    PubMed  Google Scholar 

  18. 18.

    Dahl MT, Gulli B, Berg T (1994) Complications of limb lengthening. A learning curve. Clin. Orthop. Relat. Res. 301:10–18

    PubMed  Google Scholar 

  19. 19.

    Danziger MB, Kumar A, DeWeese J (1995) Fractures after femoral lengthening using the Ilizarov method. J. Pediatr. Orthop. 15 no. 2, 220–223

    CAS  PubMed  Google Scholar 

  20. 20.

    Simpson AH, Kenwright J (2000) Fracture after distraction osteogenesis. J. Bone Jt. Surg. Br. 82 no. 5, 659–665

    Article  CAS  Google Scholar 

  21. 21.

    Aquerreta JD, Forriol F, Canadell J (1994) Complications of bone lengthening. Int. Orthop. 18 no. 5, 299–303

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Forriol F, Iglesias A, Arias M, Aquerreta D, Canadell J (1999) Relationship between radiologic morphology of the bone lengthening formation and its complications. J. Pediatr. Orthop. B. 8 no. 4, 292–298

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Dwyer JS, Owen PJ, Evans GA, Kuiper JH, Richardson JB (1996) Stiffness measurements to assess healing during leg lengthening. A preliminary report. J. Bone Jt. Surg. Br. 78 no. 2, 286–289

    CAS  Google Scholar 

  24. 24.

    Richardson JB, Cunningham JL, Goodship AE, O’Connor BT, Kenwright J (1994) Measuring stiffness can define healing of tibial fractures. J. Bone Jt. Surg. Br. 76 no. 3, 389–394

    CAS  Google Scholar 

  25. 25.

    Reichel H, Lebek S, Alter C, Hein W (1998) Biomechanical and densitometric bone properties after callus distraction in sheep. Clin. Orthop. Relat. Res. 357:237–246

    Article  PubMed  Google Scholar 

  26. 26.

    Hamanishi C, Yasuwaki Y, Kikuchi H, Tanaka S, Tamura K (1992) Classification of the callus in limb lengthening. Radiographic study of 35 limbs. Acta Orthop. Scand. 63 no. 4, 430–433

    CAS  PubMed  Google Scholar 

  27. 27.

    Tselentakis G, Owen PJ, Richardson JB, Kuiper JH, Haddaway MJ, Dwyer JS, Evans GA (2001) Fracture stiffness in callotasis determined by dual-energy X-ray absorptiometry scanning. J. Pediatr. Orthop. B. 10 no. 3, 248–254

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Chotel F, Braillon P, Sailhan F, Gadeyne S, Gellon JO, Panczer G, Pedrini C, Berard J (2008) Bone stiffness in children: Part II. Objectives criteria for children to assess healing during leg lengthening. J. Pediatr. Orthop 28 no. 5, 538–543

    PubMed  Google Scholar 

  29. 29.

    Eyres KS, Bell MJ, Kanis JA (1993) Methods of assessing new bone formation during limb lengthening. Ultrasonography, dual energy X-ray absorptiometry and radiography compared. J. Bone Jt. Surg. Br. 75 no. 3, 358–364

    CAS  Google Scholar 

  30. 30.

    Eyres KS, Bell MJ, Kanis JA (1993) New bone formation during leg lengthening: evaluated by dual energy X-ray absorptiometry. J. Bone Jt. Surg. Br. 75 no. 1, 96–106

    CAS  Google Scholar 

  31. 31.

    Maffulli N, Cheng JC, Sher A, Lam TP (1997) Dual-energy X-ray absorptiometry predicts bone formation in lower limb callotasis lengthening. Ann. R. Coll. Surg. Engl. 79 no. 4, 250–256

    CAS  PubMed  Google Scholar 

  32. 32.

    Reiter A, Sabo D, Pfeil J, Cotta H (1997) Quantitative assessment of callus distraction using dual energy X-ray absorptiometry. Int. Orthop. 21 no. 1, 35–40

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Saran N, Hamdy RC (2008) DEXA as a predictor of fixator removal in distraction osteogenesis. Clin. Orthop. Relat. Res. 466:2955–2961

    Article  PubMed  Google Scholar 

  34. 34.

    Braillon P, Chotel F, Berard J (2008) Limb lengthening: contribution of dual energy X-ray absorptiometry. J. Musculoskelet. Neuronal. Interact. 8 no. 1, 32

    CAS  PubMed  Google Scholar 

  35. 35.

    Young JW, Kostrubiak IS, Resnik CS, Paley D (1990) Sonographic evaluation of bone production at the distraction site in Ilizarov limb-lengthening procedures. AJR. Am. J. Roentgenol. 154 no. 1, 125–128

    CAS  PubMed  Google Scholar 

  36. 36.

    Bail HJ, Kolbeck S, Krummrey G, Weiler A, Windhagen HJ, Hennies K, Raun K, Raschke MJ (2002) Ultrasound can predict regenerate stiffness in distraction osteogenesis. Clin. Orthop. Relat. Res. 404:362–367

    Article  PubMed  Google Scholar 

  37. 37.

    Markel MD, Chao EY (1993) Noninvasive monitoring techniques for quantitative description of callus mineral content and mechanical properties. Clin. Orthop. Relat. Res. 293:37–45

    PubMed  Google Scholar 

  38. 38.

    Markel MD, Wikenheiser MA, Morin RL, Lewallen DG, Chao EY (1990) Quantification of bone healing. Comparison of QCT, SPA, MRI, and DEXA in dog osteotomies. Acta Orthop. Scand. 61 no. 6, 487–498

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Markel MD, Morin RL, Wikenheiser MA, Robb RA, Chao EY (1991) Multiplanar quantitative computed tomography for bone mineral analysis in dogs. Am. J. Vet. Res. 52 no. 9, 1479–1483

    CAS  PubMed  Google Scholar 

  40. 40.

    Markel MD, Morin RL, Wikenheiser MA, Lewallen DG, Chao EY (1991) Quantitative CT for the evaluation of bone healing. Calcif. Tissue Int. 49 no. 6, 427–432

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Harp JH, Aronson J, Hollis M (1994) Noninvasive determination of bone stiffness for distraction osteogenesis by quantitative computed tomography scans. Clin. Orthop. Relat. Res. 301:42–48

    PubMed  Google Scholar 

  42. 42.

    Aronson J, Shin HD (2003) Imaging techniques for bone regenerate analysis during distraction osteogenesis. J. Pediatr. Orthop. 23 no. 4, 550–560

    Article  PubMed  Google Scholar 

  43. 43.

    Skaggs DL, Leet AI, Money MD, Shaw BA, Hale JM, Tolo VT (1999) Secondary fractures associated with external fixation in pediatric femur fractures. J. Pediatr. Orthop. 19 no. 5, 582–586

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Kolbeck S, Bail H, Weiler A, Windhagen H, Haas N, Raschke M (1999) Digital radiography. A predictor of regenerate bone stiffness in distraction osteogenesis. Clin. Orthop. Relat. Res. 366:221–228

    Article  PubMed  Google Scholar 

  45. 45.

    Hazra S, Song HR, Biswal S, Lee SH, Lee SH, Jang KM, Modi HN (2008) Quantitative assessment of mineralization in distraction osteogenesis. Skelet. Radiol. 37 no. 9, 843–847

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oladapo M. Babatunde M.D..

Additional information

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Babatunde, O.M., Fragomen, A.T. & Rozbruch, S.R. Noninvasive Quantitative Assessment of Bone Healing After Distraction Osteogenesis. HSS Jrnl 6, 71–78 (2010). https://doi.org/10.1007/s11420-009-9130-y

Download citation

Keywords

  • bone healing
  • quantitative assessment
  • noninvasive
  • distraction osteogenesis
  • callus distraction
  • callotasis
  • osteodistraction