Skip to main content
Log in

Determination of new psychoactive substances and other drugs in postmortem blood and urine by UHPLC–MS/MS: method validation and analysis of forensic samples

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to validate a modified QuEChERS method followed by ultra-high performance liquid chromatography–tandem mass spectrometry to determine 79 new psychoactive substances (NPS) and other drugs in blood and urine.

Methods

Prescription drugs (n = 23), synthetic cathinones (n = 13), phenethylamines (n = 11); synthetic cannabinoids (n = 8), amphetamines (n = 7) and other psychoactive substances (n = 17) were included in the method. 500 µL of biological fluid was extracted with 2 mL of water/ACN (1:1), 500 mg of anhydrous MgSO4/NaOAc (4:1) added, followed by a supernatant cleanup with 25 mg of primary secondary amine and 75 mg of anhydrous MgSO4. Quantification was done using matrix-matched calibration curves and deuterated internal standards.

Results

The method was satisfactorily validated for blood and urine at limit of quantifications ranging from 0.4 to 16 ng/mL, and applied to the analysis of 54 blood (38 postmortem and 16 antemortem) and 16 antemortem urine samples from 68 forensic cases. All urine samples and 59.3% of the blood samples were positive for at least one analyte. Twenty-two analytes were detected in at least one biological sample, including the synthetic cathinones ethylone (222 ng/mL, antemortem blood), eutylone (246 and 446 ng/mL, urine), and N-ethylpentylone (597 and 7.3 ng/mL, postmortem and antemortem blood, respectively).

Conclusions

The validated method was shown to be suitable for the analysis of blood and urine forensic samples and an important tool to collect information on emerging drug threats and understanding the impact of NPS and other drugs in poisoning cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. UNODC (2020) World drug report 2020. https://wdr.unodc.org/wdr2020/field/WDR20_BOOKLET_4.pdf. Accessed 25 Apr 2021

  2. UNODC (2019) Early warning advisory on new psychoactive substances 2019. https://www.unodc.org/LSS/Page/NPS. Accessed 25 Apr 2021

  3. EMCDDA (2020) European drug report 2020. https://www.emcdda.europa.eu/publications/edr/trends-developments/2020_en. Accessed 25 Apr 2021

  4. de Souza BB, Silveira Filho J, Nonemacher K et al (2020) New psychoactive substances (NPS) prevalence over LSD in blotter seized in State of Santa Catarina, Brazil: a six-year retrospective study. Forensic Sci Int 306:110002. https://doi.org/10.1016/j.forsciint.2019.110002

    Article  CAS  Google Scholar 

  5. Machado Y, Coelho Neto J, Lordeiro RA et al (2019) Profile of new psychoactive substances (NPS) and other synthetic drugs in seized materials analysed in a Brazilian forensic laboratory. Forensic Toxicol 37:265–271. https://doi.org/10.1007/s11419-018-0456-3

    Article  Google Scholar 

  6. Costa JL, Cunha KF, Lanaro R et al (2019) Analytical quantification, intoxication case series, and pharmacological mechanism of action for N-ethylnorpentylone (N-ethylpentylone or ephylone). Drug Test Anal 11:461–471. https://doi.org/10.1002/dta.2502

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari Júnior E, Caldas ED (2018) Simultaneous determination of drugs and pesticides in postmortem blood using dispersive solid-phase extraction and large volume injection-programmed temperature vaporization-gas chromatography–mass spectrometry. Forensic Sci Int 290:318–326. https://doi.org/10.1016/j.forsciint.2018.07.031

    Article  CAS  PubMed  Google Scholar 

  8. Ferrari Júnior E, dos Santos JBA, Caldas ED (2021) Drugs, pesticides and metabolites in forensic post-mortem blood samples. Med Sci Law 61:97–104. https://doi.org/10.1177/0025802420965006

    Article  PubMed  Google Scholar 

  9. Kraemer M, Boehmer A, Madea B, Maas A (2019) Death cases involving certain new psychoactive substances: a review of the literature. Forensic Sci Int 298:186–267. https://doi.org/10.1016/j.forsciint.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  10. Elliott SP, Stephen DWS, Paterson S (2018) The United Kingdom and Ireland association of forensic toxicologists forensic toxicology laboratory guidelines (2018). Sci Justice 58:335–345. https://doi.org/10.1016/j.scijus.2018.05.004

    Article  PubMed  Google Scholar 

  11. Helander A, Bäckberg M, Hultén P et al (2014) Detection of new psychoactive substance use among emergency room patients: results from the Swedish STRIDA project. Forensic Sci Int 243:23–29. https://doi.org/10.1016/j.forsciint.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  12. Peters FT (2014) Recent developments in urinalysis of metabolites of new psychoactive substances using LC-MS. Bioanalysis 6:2083–2107. https://doi.org/10.4155/bio.14.168

    Article  PubMed  Google Scholar 

  13. Montenarh D, Hopf M, Warth S et al (2015) A simple extraction and LC-MS/MS approach for the screening and identification of over 100 analytes in eight different matrices. Drug Test Anal 7:214–240. https://doi.org/10.1002/dta.1657

    Article  CAS  PubMed  Google Scholar 

  14. Lau T, Concheiro M, Cooper G (2020) Determination of 30 synthetic cathinones in postmortem blood using LC–MS-MS. J Anal Toxicol 44:679–687. https://doi.org/10.1093/jat/bkaa071

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann S, Kieliba T, Beike J et al (2017) Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B 1064:124–138. https://doi.org/10.1016/j.jchromb.2017.09.003

    Article  CAS  Google Scholar 

  16. Anzillotti L, Odoardi S, Strano-Rossi S (2014) Cleaning up blood samples using a modified “QuEChERS” procedure for the determination of drugs of abuse and benzodiazepines by UPLC–MSMS. Forensic Sci Int 243:99–106. https://doi.org/10.1016/j.forsciint.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  17. Dulaurent S, El Balkhi S, Poncelet L et al (2016) QuEChERS sample preparation prior to LC-MS/MS determination of opiates, amphetamines, and cocaine metabolites in whole blood. Anal Bioanal Chem 408:1–8. https://doi.org/10.1007/s00216-015-9248-3

    Article  CAS  Google Scholar 

  18. Orfanidis A, Gika H, Theodoridis G et al (2020) A UHPLC–MS-MS method for the determination of 84 drugs of abuse and pharmaceuticals in blood. J Anal Toxicol 45:28–43. https://doi.org/10.1093/jat/bkaa032

    Article  CAS  Google Scholar 

  19. Colaço CS, Alves SS, Nolli LM et al (2020) Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats. Metab Brain Dis 35:739–751. https://doi.org/10.1007/s11011-020-00547-w

    Article  CAS  PubMed  Google Scholar 

  20. AAFS (2019) Standard practices for method validation in forensic toxicology, American Academy of Forensic Sciences. http://www.asbstandardsboard.org/wp-content/uploads/2019/11/036_Std_e1.pdf. Accessed 20 Mar 2021

  21. McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  22. Van Eeckhaut A, Lanckmans K, Sarre S et al (2009) Validation of bioanalytical LC–MS/MS assays: evaluation of matrix effects. J Chromatogr B 877:2198–2207. https://doi.org/10.1016/j.jchromb.2009.01.003

    Article  CAS  Google Scholar 

  23. Odoardi S, Fisichella M, Romolo FS, Strano-Rossi S (2015) High-throughput screening for new psychoactive substances (NPS) in whole blood by DLLME extraction and UHPLC–MS/MS analysis. J Chromatogr B 1000:57–68. https://doi.org/10.1016/j.jchromb.2015.07.007

    Article  CAS  Google Scholar 

  24. Yang CA, Liu HC, Lin DL et al (2017) Simultaneous quantitation of methamphetamine, ketamine, opiates and their metabolites in urine by SPE and LC–MS-MS. J Anal Toxicol 41:679–687. https://doi.org/10.1093/jat/bkx057

    Article  CAS  PubMed  Google Scholar 

  25. Gaunitz F, Kieliba T, Thevis M, Mercer-Chalmers-Bender K (2020) Solid-phase extraction–liquid chromatography–tandem mass spectrometry method for the qualitative analysis of 61 synthetic cannabinoid metabolites in urine. Drug Test Anal 12:27–40. https://doi.org/10.1002/dta.2680

    Article  CAS  PubMed  Google Scholar 

  26. Schulz M, Schmoldt A, Andresen-Streichert H, Iwersen-Bergmann S (2020) Revisited: therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Crit Care 24:1–4. https://doi.org/10.1186/s13054-020-02915-5

    Article  Google Scholar 

  27. Zawilska JB, Kacela M, Adamowicz P (2020) NBOMes–highly potent and toxic alternatives of LSD. Front Neurosci 14:78. https://doi.org/10.3389/fnins.2020.00078

    Article  PubMed  PubMed Central  Google Scholar 

  28. Halberstadt AL (2017) Pharmacology and toxicology of N-benzylphenethylamine (“NBOMe”) hallucinogens. Curr Top Behav Neurosci 32:283–311. https://doi.org/10.1007/7854_2016_64

    Article  CAS  PubMed  Google Scholar 

  29. Arantes LC, Júnior EF, de Souza LF et al (2017) 25I-NBOH: a new potent serotonin 5-HT2A receptor agonist identified in blotter paper seizures in Brazil. Forensic Toxicol 35:408–414. https://doi.org/10.1007/s11419-017-0357-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nielsen LM, Holm NB, Leth-Petersen S et al (2017) Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test Anal 9:671–679. https://doi.org/10.1002/dta.2031

    Article  CAS  PubMed  Google Scholar 

  31. Shintani-Ishida K, Saka K, Nakamura M et al (2018) Experimental study on the postmortem redistribution of the substituted phenethylamine, 25B-NBOMe. J Forensic Sci 63:588–591. https://doi.org/10.1111/1556-4029.13583

    Article  CAS  PubMed  Google Scholar 

  32. Lee D, Chronister CW, Hoyer J, Goldberger BA (2015) Ethylone-related deaths: toxicological findings. J Anal Toxicol 39:567–571. https://doi.org/10.1093/jat/bkv053

    Article  CAS  PubMed  Google Scholar 

  33. Patel BN, Sharma N, Sanyal M, Shrivastav PS (2008) High throughput and sensitive determination of trazodone and its primary metabolite, m-chlorophenylpiperazine, in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B 871:44–54. https://doi.org/10.1016/j.jchromb.2008.06.046

    Article  CAS  Google Scholar 

  34. Gaillard YP, Cuquel AC, Boucher A et al (2013) A fatality following ingestion of the designer drug meta-chlorophenylpiperazine (mCPP) in an asthmatic—HPLC-MS/MS detection in biofluids and hair. J Forensic Sci 58:263–269. https://doi.org/10.1111/j.1556-4029.2012.02254.x

    Article  CAS  PubMed  Google Scholar 

  35. Atherton D, Dye D, Robinson CA, Beck R (2019) n-Ethyl pentylone-related deaths in Alabama. J Forensic Sci 64:304–308. https://doi.org/10.1111/1556-4029.13823

    Article  CAS  PubMed  Google Scholar 

  36. Krotulski AJ, Papsun DM, De Martinis BS et al (2018) N-Ethyl pentylone (ephylone) intoxications: quantitative confirmation and metabolite identification in authentic human biological specimens. J Anal Toxicol 42:467–475. https://doi.org/10.1093/jat/bky025

    Article  CAS  PubMed  Google Scholar 

  37. Krotulski AJ, Papsun DM, Chronister CW et al (2020) Eutylone intoxications—an emerging synthetic stimulant in forensic investigations. J Anal Toxicol 45:8–20. https://doi.org/10.1093/jat/bkaa113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tales Mateus Vieira da Rocha for the help with sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloisa Dutra Caldas.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest to disclose.

Ethical approval

This study was approved by the Ethical Committee for Human Studies of the University of Brasilia, Brazil (CAAE 2936819.3.0000.0030).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 707 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari Júnior, E., Caldas, E.D. Determination of new psychoactive substances and other drugs in postmortem blood and urine by UHPLC–MS/MS: method validation and analysis of forensic samples. Forensic Toxicol 40, 88–101 (2022). https://doi.org/10.1007/s11419-021-00600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-021-00600-y

Keywords

Navigation