Skip to main content
Log in

Determination of antidepressants in whole blood using hollow-fiber liquid-phase microextraction and gas chromatography–mass spectrometry

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

A hollow-fiber liquid-phase microextraction (HF-LPME), used in three-phase mode, and combined with gas chromatography–mass spectrometry (GC–MS), was developed to quantify antidepressants and their major metabolites (amitriptyline, nortriptyline, imipramine, desipramine, clomipramine, desmethylclomipramine, fluoxetine, and norfluoxetine) in whole blood samples, using their deuterated analogs as internal standards. The HF-LPME system comprised a disposable 8-cm polypropylene porous hollow fiber, 4.0 ml of sample solution (0.5 ml of blood added to 3.5 ml of 0.1 M NaOH: donor phase), dodecane (organic phase), and 0.1 M formic acid (acceptor phase) for extraction. After stirring the system, the acceptor phase was evaporated under a nitrogen stream and resuspended in 30 μl of methanol. Derivatization was not required. A 2.0-μl aliquot of this solution was injected into a GC–MS system. The method was validated after the optimization of several parameters that may influence the extraction efficiency. The limits of quantification for all antidepressants were below the therapeutic levels (20.0 ng/ml). The average intraday and interday precisions were within 9.7 and 9.8 %, respectively, for all analytes. The calibration curves were linear in the concentration range of 20–1,200 ng/ml. The developed method was applied to seven actual postmortem samples. Tricyclic antidepressants were detected in all of the analyzed cases. To our knowledge, this is the first demonstration of usefulness of HF-LPME for analysis of antidepressants in postmortem forensic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (2013) The 20th anniversary of world mental health day. http://www.who.int/mediacentre/news/notes/2012/mental_health_day_20121009/en/. Accessed 26 Dec 2013

  2. Hayashi D, Kumazawa T, Hasegawa C, Lee X-P, Marumo A, Uchigasaki S, Kawamura M, Sato K (2012) A simple and reliable method for quantifying plasma concentrations of tetracyclic antidepressants using monolithic silica solid-phase extraction tips. Forensic Toxicol 30:98–105

    Article  CAS  Google Scholar 

  3. Pietracci E, Bermejo A-M, Álvarez I, Cabarcos P, Balduini W, Tabernero M-J (2013) Simultaneous determination of new-generation antidepressants in plasma by gas chromatography–mass spectrometry. Forensic Toxicol 31:124–132

    Google Scholar 

  4. Wiegand TJ, Wax PM, Schwartz T, Finkelstein Y, Gorodetsky R, Brent J (2012) The toxicology investigators consortium case registry—the 2011 experience. J Med Toxicol 8:360–377

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cheeta S, Schifano F, Oyefeso A, Webb L, Ghodse AH (2004) Antidepressant-related deaths and antidepressant prescriptions in England and Wales, 1998–2000. Br J Psychiatry 184:41–47

    Article  PubMed  Google Scholar 

  6. Amundsen I, Oiestad ÅM, Ekeberg D, Kristoffersen L (2013) Quantitative determination of fifteen basic pharmaceuticals in ante- and post-mortem whole blood by high pH mobile phase reversed phase ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 15:112–123

    Article  Google Scholar 

  7. Breaud AR, Harlan R, Kozak M, Clarke W (2009) A rapid and reliable method for the quantitation of tricyclic antidepressants in serum using HPLC–MS/MS. Clin Biochem 42:1300–1307

    Article  CAS  PubMed  Google Scholar 

  8. Lee X-P, Hasegawa C, Kumazawa T, Shinmen N, Shoji Y, Seno H, Sato K (2008) Determination of tricyclic antidepressants in human plasma using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Sep Sci 31:2265–2271

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira AF, de Figueiredo EC, Dos Santos-Neto AJ (2013) Analysis of fluoxetine and norfluoxetine in human plasma by liquid-phase microextraction and injection port derivatization GC–MS. J Pharm Biomed Anal 73:53–58

    Article  PubMed  Google Scholar 

  10. Papoutsis I, Khraiwesh A, Nikolaou P, Pistos C, Spiliopoulou C, Athanaselis S (2012) A fully validated method for the simultaneous determination of 11 antidepressant drugs in whole blood by gas chromatography–mass spectrometry. J Pharm Biomed Anal 70:557–562

    Article  CAS  PubMed  Google Scholar 

  11. Alves C, Santos-Neto AJ, Fernandes C, Rodrigues JC, Lanças FM (2007) Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction-liquid chromatography–mass spectrometry. J Mass Spectrom 42:1342–1347

    Article  CAS  PubMed  Google Scholar 

  12. Silva BJ, Lanças FM, Queiroz ME (2009) Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. J Chromatogr A 1216:8590–8597

    Article  PubMed  Google Scholar 

  13. Mastrogianni O, Theodoridis G, Spagou K, Violante D, Henriques T, Pouliopoulos A, Psaroulis K, Tsoukali H, Raikos N (2012) Determination of venlafaxine in post-mortem whole blood by HS-SPME and GC-NPD. Forensic Sci Int 215:105–109

    Article  CAS  PubMed  Google Scholar 

  14. Chaves AR, Leandro FZ, Carris JA, Queiroz ME (2010) Microextraction in packed sorbent for analysis of antidepressants in human plasma by liquid chromatography and spectrophotometric detection. J Chromatogr B 878:2123–2129

    Article  CAS  Google Scholar 

  15. Esrafili A, Yamini Y, Shariati S (2007) Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids. Anal Chim Acta 604:127–133

    Article  CAS  PubMed  Google Scholar 

  16. de Freitas DF, Porto CE, Vieira EP, de Siqueira ME (2010) Three-phase, liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detection for the simultaneous determination of fluoxetine and norfluoxetine in human plasma. J Pharm Biomed Anal 51:170–177

    Article  PubMed  Google Scholar 

  17. Ghambarian M, Yamini Y, Esrafili A (2012) Three-phase hollow fiber microextraction based on two immiscible organic solvents for determination of tricyclic antidepressant drugs: comparison with conventional three-phase hollow fiber microextraction. J Chromatogr A 1222:5–12

    Article  CAS  PubMed  Google Scholar 

  18. Jafari MT, Saraji M, Sherafatmand H (2011) Electrospray ionization-ion mobility spectrometry as a detection system for three-phase hollow fiber microextraction technique and simultaneous determination of trimipramine and desipramine in urine and plasma samples. Anal Bioanal Chem 399:3555–3564

    Article  CAS  PubMed  Google Scholar 

  19. Menck RA, de Lima DS, Seulin SC, Leyton V, Pasqualucci CA, Muñoz DR, Osselton MD, Yonamine M (2012) Hollow-fiber liquid-phase microextraction and gas chromatography–mass spectrometry of barbiturates in whole blood samples. J Sep Sci 35:3361–3368

    Google Scholar 

  20. Menck RA, de Oliveira CDR, de Lima DS, Goes LE, Leyton V, Pasqualucci CA, Muñoz DR, Yonamine M (2013) Hollow fiber-liquid phase microextraction of barbiturates in liver samples. Forensic Toxicol 31:31–36

    Google Scholar 

  21. UNODC (2009) Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized material and biological specimens. Laboratory and Scientific Section, United Nations Office on Drugs and Crime, Vienna. http://www.unodc.org/documents/scientific/validation_E.pdf. Accessed 3 Feb 2014

  22. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224

    Article  CAS  PubMed  Google Scholar 

  23. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29:S49–S52

    PubMed Central  PubMed  Google Scholar 

  24. Almeida AM, Castel-Branco MM, Falcão AC (2002) Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B 774:215–222

    Article  CAS  Google Scholar 

  25. Pedersen-Bjergaard S, Rasmussen KE (2005) Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques. J Chromatogr B 817:3–12

    Article  CAS  Google Scholar 

  26. Musshoff F, Stamer UM, Madea B (2010) Pharmacogenetics and forensic toxicology. Forensic Sci Int 203:53–62

    Article  CAS  PubMed  Google Scholar 

  27. Wurita A, Suzuki O, Hasegawa K, Gonmori K, Minakata K, Yamagishi I, Nozawa H, Watanabe K (2013) Sensitive determination of ethylene glycol, propylene glycol and diethylene glycol in human whole blood by isotope dilution gas chromatography–mass spectrometry, and the presence of appreciable amounts of the glycols in blood of healthy subjects. Forensic Toxicol 31:272–280

    Article  CAS  Google Scholar 

  28. Kudo K, Ishida T, Hikiji W, Hayashida M, Uekusa K, Usumoto Y, Tsuji A, Ikeda N (2009) Construction of calibration-locking databases for rapid and reliable drug screening by gas chromatography–mass spectrometry. Forensic Toxicol 27:21–31

    Article  CAS  Google Scholar 

  29. Khraiwesh A, Papoutsis I, Nikolaou P, Pistos C, Spiliopoulou C, Athanaselis SJ (2011) Development and validation of an EI-GC/MS method for the determination of sertraline and its major metabolite desmethyl-sertraline in blood. J Chromatogr B 879:2576–2582

    Article  CAS  Google Scholar 

  30. Halvorsen TG, Bjergaard SP, Reubsaet JLE, Rasmussen KE (2003) Liquid-phase microextraction combined with liquid chromatography–mass spectrometry. Extraction from small volumes of biological samples. J Sep Sci 26:1520–1526

    Article  CAS  Google Scholar 

  31. EMA (2011) Guideline on bioanalytical method validation. European Medicines Agency, London. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf. Accessed 3 Feb 2014

  32. Drummer OH (2001) The forensic pharmacology of drugs of abuse. Arnold, London

    Google Scholar 

  33. Reis M, Aamo T, Ahlner J, Druid H (2007) Reference concentrations of antidepressants. A compilation of postmortem and therapeutic levels. J Anal Toxicol 31:254–264

    Article  CAS  PubMed  Google Scholar 

  34. Yarema MC, Becker CE (2005) Key concepts in postmortem drug redistribution. Clin Toxicol 43:235–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Faculty of Medicine, University of São Paulo (LIM 40/HC-FMUSP). Financial support provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grant No. 2009/08314–9) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grant No. 470643/2009–9) is also gratefully acknowledged. Marcelo Filonzi dos Santos is a fellow of the FAPESP (Grant No. 2010/06530-3). Caio Caleiras Ferri is a fellow of the Programa Institucional de Bolsas de Iniciação Científica-CNPq. The authors thank the Blood Bank of Sírio Libanês Hospital for having donated blank blood samples for development of the analytical method.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Filonzi dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, M.F., Ferri, C.C., Seulin, S.C. et al. Determination of antidepressants in whole blood using hollow-fiber liquid-phase microextraction and gas chromatography–mass spectrometry. Forensic Toxicol 32, 214–224 (2014). https://doi.org/10.1007/s11419-014-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-014-0226-9

Keywords

Navigation