Skip to main content
Log in

Aromatase inhibitors isolated from a flowering tea, snow Chrysanthemum (the capitula of Coreopsis tinctoria Nutt.)

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Methanol extract from the capitula of Coreopsis tinctoria Nutt. (Asteraceae), which is also known as a flowering tea or blooming tea “Snow Chrysanthemum,” was found to inhibit the enzymatic activity of aromatase. A total of 24 known isolates (124) were identified from the extract, including three chalcones (13), an aurone (4), five flavanones (59), four flavanols (1013), a flavonol (14), and two biflavanones (15, 16). Among them, okanin (1, Ki = 1.6 μM), (2S)-naringenin (5, 0.90 μM), isookanin (6, 0.81 μM), (2S)-7,3',5'-trihydroxyflavaone (7, 0.13 μM), and (2S)-5,7,3',5'-tetrahydroxyflavanone (8, 0.32 μM) exhibited relatively potent competitive inhibition. Specifically, the isolates 7 and 8, having a common 3',5'-resorcinol moiety at the B ring in their flavanone skeleton, exhibited potent inhibitory activities compared to those of a clinically applied aminoglutethimide (0.84 μM) and naturally occurring flavone, chrysin (0.23 μM), which is a common non-steroidal aromatase inhibitor. Importantly, the active flavonoid constituents (1 and 58) did not inhibit the activity of 5α-reductase enzyme, which normally reacts with the same substrate “testosterone,” thus, these compounds were suggested to be specific to aromatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available the corresponding author upon reasonable request.

References

  1. The World Flora Online (2022) Coreopsis tinctoria Nutt. Published on the Internet. http://www.worldfloraonline.org/taxon/wfo-0000069050. Accessed 2 Dec 2022

  2. Foster S, Duke JA (2000) A field guide to medicinal plants and herbs of Eastern and Central North America. Houghton Mifflin Harcourt, Boston, p 141

    Google Scholar 

  3. Dias T, Bronze MR, Houghton PJ, Mota-Filipe H, Paulo A (2010) The flavonoid-rich fraction of Coreopsis tinctoria promotes glucose tolerance regain through pancreatic function recovery in streptozotocin-induced glucose-intolerant rats. J Ethnopharmacol 132:483–490

    Article  CAS  PubMed  Google Scholar 

  4. Shen J, Hu M, Tan W, Ding J, Jiang B, Xu L, Hamulati H, He C, Sun Y, Xiao P (2021) Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: a review. J Ethnopharmacol 269:113690

    Article  CAS  PubMed  Google Scholar 

  5. Guo J, Wang A, Yang K, Ding H, Hu Y, Yang Y, Huang S, Xu J, Liu T, Yang H, Xin Z (2017) Isolation, characterization and antimicrobial activities of polyacetylene glycosides from Coreopsis tinctoria Nutt. Phytochemistry 136:65–69

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, Zhong J, Zhang Q, Qing D, Yan C (2019) Structural elucidation and bioactivities of a novel arabinogalactan from Coreopsis tinctoria. Carbohydr Polymers 219:219–228

    Article  CAS  Google Scholar 

  7. Sun Y-H, Zhao J, Jin H-T, Cao Y, Ming T, Zhang L-L, Hu M-Y, Hamlati H, Pang S-B, Ma X-P (2013) Vasorelaxant effects of the extracts and some flavonoids from the buds of Coreopsis tinctoria. Pharm Biol 51:1158–1164

    Article  CAS  PubMed  Google Scholar 

  8. Dias T, Liu B, Jones P, Houghton PJ, Mota-Filipe H, Paulo A (2012) Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. J Ethnopharmacol 139:485–492

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Du D, Liang Y, Xin G, Huang B-Z, Huang W (2015) Novel polyacetylenes from Coreopsis tinctoria Nutt. J Asian Nat Prod Res 17:744–749

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W-S, Sun Q-L, Zheng W, Zhang Y, Du J, Dong C-X, Tao N (2019) Structural characterization of a polysaccharide from Coreopsis tinctoria Nutt. and its function to modify myeloid derived suppressor cells. Int J Biol Macromol 126:926–933

    Article  CAS  PubMed  Google Scholar 

  11. Yu Q, Chen W, Zhong J, Huang D, Shi W, Chen H, Yan C (2022) Purification, structural characterization, and bioactivities of a polysaccharide from Coreopsis tinctoria. Food Front. https://doi.org/10.1002/fft2.145

    Article  Google Scholar 

  12. Gaspar L, Oliveira AP, Silva LR, Andrade PB, de Pinho PG, Botelho J, Valentão P (2012) Metabolic and biological prospecting of Coreopsis tinctoria. Rev Bras Farmacogn 22:350–358

    Article  CAS  Google Scholar 

  13. Wang T, Xi M, Guo Q, Wang L, Shen Z (2015) Chemical components and antioxidant activity of volatile oil of a Compositae tea (Coreopsis tinctoria Nutt.) from Mt Kunlun. Ind Crops Prod 67:318–323

    Article  CAS  Google Scholar 

  14. Jiang B, Le L, Wan W, Zhai W, Hu K, Xu L, Xiao P (2015) The flower tea Coreopsis tinctoria increases insulin sensitivity and regulates hepatic metabolism in rats fed a high-fat diet. Endocrinology 156:2006–2018

    Article  PubMed  Google Scholar 

  15. Cai W, Yu L, Zhang Y, Feng L, Kong S, Tan H, Xu H, Huang C (2016) Extracts of Coreopsis tinctoria Nutt. flower exhibit antidiabetic effects via the inhibition of α-glucosidase activity. J Diabetes Res 2016:1–9

    Google Scholar 

  16. Zhang F, Yang M, Xu J, Hu Y, Gao R, Huang K, He X (2022) Coreopsis tinctoria and its flavonoids ameliorate hyperglycemia in obese mice induced by high-fat diet. Nutrients 14:1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Begmatov N, Li J, Bobakulov K, Numonov S, Aisa HA (2020) The chemical components of Coreopsis tinctoria Nutt. and their antioxidant, antidiabetic and antibacterial activities. Nat Prod Res 34:1772–1776

    Article  CAS  PubMed  Google Scholar 

  18. Du D, Yao L, Zhang R, Shi N, Shen Y, Yang X, Zhang X, Jin T, Liu T, Hu L, Xing Z, Criddle DN, Xia Q, Huang W, Sutton R (2018) Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. J Ethnopharmacol 224:261–272

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Chen W, Yang Y, Liu T, Yang H, Xin Z (2015) New phenolic compounds from Coreopsis tinctoria Nutt. and their antioxidant and angiotensin I-converting enzyme inhibitory activities. J Agric Food Chem 63:200–207

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Shi S, Zhao M, Chai X, Tu P (2013) Coreosides A-D, C14-polyacetylene glycosides from the capitula of Coreopsis tinctoria and its anti-inflammatory activity against COX-2. Fitoterapia 87:93–97

    Article  CAS  PubMed  Google Scholar 

  21. Yoshikawa M, Morikawa T, Murakami T, Toguchida I, Harima S, Matsuda H (1999) Medicinal flowers. I. aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem Pharm Bull 47:340–345

    Article  CAS  Google Scholar 

  22. Yoshikawa M, Morikawa T, Toguchida I, Harima S, Hi M (2000) Medicinal flowers. II. inhibitors of nitric oxide production and absolute stereostructures of five new germacrane-type sesquiterpenes, kikkanols D, D monoacetate, E, F, and F monoacetate from the flowers of Chrysanthemum indicum L. Chem Pharm Bull 48:651–656

    Article  CAS  Google Scholar 

  23. Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem Pharm Bull 50:972–975

    Article  CAS  Google Scholar 

  24. Morikawa T (2007) Search for bioactive constituents from several medicinal foods: hepatoprotective, antidiabetic, and antiallergic activities. J Nat Med 61:112–126

    Article  CAS  Google Scholar 

  25. Morikawa T (2021) Search for bio-functional molecules from plant resources with edible flower parts. FFI J 226:323–332

    CAS  Google Scholar 

  26. Shimoda H, Ninomiya K, Nishida N, Yoshino T, Morikawa T, Matsuda H, Yoshikawa M (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 13:223–228

    Article  CAS  PubMed  Google Scholar 

  27. Xie H, Wang T, Matsuda H, Morikawa T, Yoshikawa M, Tani T (2005) Bioactive constituents from Chinese natural medicines. XV. inhibitory effects on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem Pharm Bull 53:1416–1422

    Article  CAS  Google Scholar 

  28. Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A, Matsuda H (2005) Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J Nat Prod 68:1360–1365

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda H, Nakamura S, Morikawa T, Muraoka O, Yoshikawa M (2016) New biofunctional effects of the flower buds of Camellia sinensis and its bioactive acylated oleanane-type triterpene oligoglycosides. J Nat Med 70:689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morikawa T, Miyake S, Miki Y, Ninomiya K, Yoshikawa M, Muraoka O (2012) Quantitative analysis of acylated oleanane-type triterpene saponins, chakasaponins I-III and floratheasaponins A–F, in the flower buds of Camellia sinensis from different regional origins. J Nat Med 66:608–613

    Article  CAS  PubMed  Google Scholar 

  31. Morikawa T, Ninomiya K, Miyake S, Miki Y, Okamoto M, Yoshikawa M, Muraoka O (2013) Flavonol glycosides with lipid accumulation inhibitory activity and simultaneous quantitative analysis of 15 polyphenols and caffeine in the flower buds of Camellia sinensis from different regions by LCMS. Food Chem 140:353–360

    Article  CAS  PubMed  Google Scholar 

  32. Morikawa T, Lee I-J, Okugawa S, Miyake S, Miki Y, Ninomiya K, Kitagawa N, Yoshikawa M, Muraoka O (2013) Quantitative analysis of catechin, flavonoid, and saponin constituents in “tea flower”, the flower buds of Camellia sinensis, from different regions in Taiwan. Nat Prod Commun 8:1934578X1300801

    Google Scholar 

  33. Kitagawa N, Morikawa T, Motai C, Ninomiya K, Okugawa S, Nishida A, Yoshikawa M, Muraoka O (2016) The antiproliferative effect of chakasaponins I and II, floratheasaponin A, and epigallocatechin 3-O-gallate isolated from Camellia sinensis on human digestive tract carcinoma cell lines. Int J Mol Sci 17:1979

    Article  PubMed  PubMed Central  Google Scholar 

  34. Morikawa T, Li X, Nishida E, Ito Y, Matsuda H, Nakamura S, Muraoka O, Yoshikawa M (2008) Perennisosides I−VII, acylated triterpene saponins with antihyperlipidemic activities from the flowers of Bellis perennis. J Nat Prod 71:828–835

    Article  CAS  PubMed  Google Scholar 

  35. Yoshikawa M, Li X, Nishida E, Nakamura S, Matsuda H, Muraoka O, Morikawa T (2008) Medicinal flowers. XXI. structures of perennisaponins A, B, C, D, E, and F, acylated oleanane-type triterpene oligoglycosides, from the flowers of Bellis perennis. Chem Pharm Bull 56:559–568

    Article  CAS  Google Scholar 

  36. Morikawa T, Li X, Nishida E, Nakamura S, Ninomiya K, Matsuda H, Oda Y, Muraoka O, Yoshikawa M (2010) Medicinal flowers. part 29. acylated oleanane-type triterpene bisdesmosides: perennisaponins G, H, I, J, K, L, and M with pancreatic lipase inhibitory activity from the flowers of Bellis perennis. Helv Chim Acta 93:573–586

    Article  CAS  Google Scholar 

  37. Morikawa T, Muraoka O, Yoshikawa M (2010) Pharmaceutical food science: search for anti-obese constituents from medicinal foods-anti-hyperlipidemic saponin constituents from the flowers of Bellis perennis-. Yakugaku Zasshi 130:673–678

    Article  CAS  PubMed  Google Scholar 

  38. Morikawa T, Li X, Nishida E, Nakamura S, Ninomiya K, Matsuda H, Hamao M, Muraoka O, Hayakawa T, Yoshikawa M (2011) Medicinal flowers. XXXII. structures of oleanane-type triterpene saponins, perennisosides VIII, IX, X, XI, and XII, from the flowers of Bellis perennis: structures of oleanane-type triterpene saponins, perennisosides VIII, IX, X, XI, and XII, from the flowers of Bellis perennis. Chem Pharm Bull 59:889–895

    Article  CAS  Google Scholar 

  39. Morikawa T, Ninomiya K, Takamori Y, Nishida E, Yasue M, Hayakawa T, Muraoka O, Li X, Nakamura S, Yoshikawa M, Matsuda H (2015) Oleanane-type triterpene saponins with collagen synthesis-promoting activity from the flowers of Bellis perennis. Phytochemistry 116:203–212

    Article  CAS  PubMed  Google Scholar 

  40. Ninomiya K, Motai C, Nishida E, Kitagawa N, Yoshihara K, Hayakawa T, Muraoka O, Li X, Nakamura S, Yoshikawa M, Matsuda H, Morikawa T (2016) Acylated oleanane-type triterpene saponins from the flowers of Bellis perennis show anti-proliferative activities against human digestive tract carcinoma cell lines. J Nat Med 70:435–451

    Article  CAS  PubMed  Google Scholar 

  41. Xue Y, Morikaw T, Ninomiya K, Imura K, Muraoka O, Yuan D, Yoshikawa M (2008) Medicinal flowers. XXIII. New taraxastane-type triterpene, punicanolic acid, with tumor necrosis factor-α inhibitory activity from the flowers of Punica granatum. Chem Pharm Bull 56:1628–1631

    Article  Google Scholar 

  42. Morikawa T, Wang L-B, Nakamura S, Ninomiya K, Yokoyama E, Matsuda H, Muraoka O, Wu L-J, Yoshikawa M (2009) Medicinal flowers. XXVII. new flavanone and chalcone glycosides, arenariumosides I, II, III, and IV, and tumor necrosis factor-α inhibitors from everlasting, flowers of Helichrysum arenarium. Chem Pharm Bull 57:361–367

    Article  CAS  Google Scholar 

  43. Yoshikawa M, Wang L-B, Morikawa T, Nakamura S, Ninomiya K, Matsuda H, Muraoka O, Wu L-J (2009) Medicinal flowers. XXVIII. structures of five new glycosides, everlastosides A, B, C, D, and E, from the flowers of Helichrysum arenarium. Heterocycles 78:1235–1242

    Article  Google Scholar 

  44. Morikawa T, Wang L-B, Ninomiya K, Nakamura S, Matsuda H, Muraoka O, Wu L-J, Yoshikawa M (2009) Medicinal flowers. XXX. eight new glycosides, everlastosides F-M, from the flowers of Helichrysum arenarium. Chem Pharm Bull 57:853–859

    Article  CAS  Google Scholar 

  45. Morikawa T, Ninomiya K, Akaki J, Kakihara N, Kuramoto H, Matsumoto Y, Hayakawa T, Muraoka O, Wang L-B, Wu L-J, Nakamura S, Yoshikawa M, Matsuda H (2015) Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. J Nat Med 69:494–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morikawa T, Imura K, Miyake S, Ninomiya K, Matsuda H, Yamashita C, Muraoka O, Hayakawa T, Yoshikawa M (2012) Promoting the effect of chemical constituents from the flowers of Poacynum hendersonii on adipogenesis in 3T3-L1 cells. J Nat Med 66:39–48

    Article  CAS  PubMed  Google Scholar 

  47. Morikawa T, Kitagawa N, Tanabe G, Ninomiya K, Okugawa S, Motai C, Kamei I, Yoshikawa M, Lee I-J, Muraoka O (2016) Quantitative determination of alkaloids in lotus flower (flower buds of Nelumbo nucifera) and their melanogenesis inhibitory activity. Molecules 21:930

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morikawa T, Okugawa S, Manse Y, Muraoka O, Yoshikawa M, Ninomiya K (2019) Quantitative determination of principal aporphine and benzylisoquinoline alkaloids due to blooming state in lotus Flower (flower buds of Nelumbo nucifera) and their hyaluronidase inhibitory activity. Nat Prod Commun 14:1934578X1985783

    Google Scholar 

  49. Scabia V, Ayyanan A, De Martino F, Agnoletto A, Battista L, Laszlo C, Treboux A, Zaman K, Stravodimou A, Jallut D, Fiche M, Bucher P, Ambrosini G, Sflomos G, Brisken C (2022) Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nat Commun 13:3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lønning PE, Haynes BP, Straume AH, Dunbier A, Helle H, Knappskog S, Dowsett M (2011) Exploring breast cancer estrogen disposition: the basis for endocrine manipulation. Clin Cancer Res 17:4948–4958

    Article  PubMed  Google Scholar 

  51. Chumsri S, Howes T, Bao T, Sabnis G, Brodie A (2011) Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 125:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lima TC, Souza RJ, Santos ADC, Moraes MH, Biondo NE, Barison A, Steindel M, Biavatti MW (2016) Evaluation of leishmanicidal and trypanocidal activities of phenolic compounds from Calea uniflora Less. Nat Prod Res 30:551–557

    Article  CAS  PubMed  Google Scholar 

  53. Sashida Y, Ogawa K, Kitada M, Karikome H, Mimaki Y, Shimomura H (1991) New aurone glucosides and new phenylpropanoid glucosides from Bidens pilosa. Chem Pharm Bull 39:709–711

    Article  CAS  Google Scholar 

  54. Guimarães AG, Gomes SVF, Moraes VRS, Nogueira PCL, Ferreira AG, Blank AF, Santos ADC, Viana MD, Silva GH, Quintans Júnior LJ (2012) Phytochemical characterization and antinociceptive effect of Lippia gracilis Schauer. J Nat Med 66:428–434

    Article  PubMed  Google Scholar 

  55. Jung MJ, Kang SS, Jung HA, Kim GJ, Choi JS (2004) Isolation of flavonoids and a cerebroside from the stem bark of Albizzia julibrissin. Arch Pharm Res 27:593

    Article  CAS  PubMed  Google Scholar 

  56. Lee H-J, Lee O-K, Kwon Y-H, Choi D-H, Kang H-Y, Lee H-Y, Paik K-H, Lee H-J (2006) A new flavanone from the wood of Amorpha fruticosa L. Bull Korean Chem Soc 27:426–428

    Article  CAS  Google Scholar 

  57. Nessa F, Ismail Z, Mohamed N, Haris MRHM (2004) Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chem 88:243–252

    Article  CAS  Google Scholar 

  58. Olejniczak S, Ganicz K, Tomczykowa M, Gudej J, Potrzebowski MJ (2002) Structural studies of 2-(3′,4′-dihydroxyphenyl)-7-β-D-glucopyranos-1-O-yl-8-hydroxychroman-4-one in the liquid and solid states by means of 2D NMR spectroscopy and DFT calculations. J Chem Soc, Perkin Trans 2:1059–1065

    Article  Google Scholar 

  59. Kim JW, Kim TB, Yang H, Sung SH (2016) Phenolic compounds isolated from Opuntia ficus-indica fruits. Nat Prod Sci 22:117

    Article  CAS  Google Scholar 

  60. Elwekeel A, Elfishway A, AbouZid S (2012) Enhanced accumulation of flavonolignans in Silybum marianum cultured roots by methyl jasmonate. Phytochem Lett 5:393–396

    Article  CAS  Google Scholar 

  61. Pan H, Lundgren LN (1996) Phenolics from inner bark of Pinus sylvestris. Phytochemistry 42:1185–1189

    Article  CAS  Google Scholar 

  62. Ràmachandran Nair AG, Gunasegaran R, Krishnan S, Bayet C, Voirin B (1995) Flavonol glycosides from leaves of Eupatorium glandulosum. Phytochemistry 40:283–285

    Article  Google Scholar 

  63. Yan R-J, Li M-Y, Zhou H-F, Kong D-Y, Wu T (2017) Two new biflavonones from Coreopsis tinctoria. J Asian Nat Prod Res 19:960–965

    Article  CAS  PubMed  Google Scholar 

  64. Ninomiya K, Shibatani K, Sueyoshi M, Chaipech S, Pongpiriyadacha Y, Hayakawa T, Muraoka O, Morikawa T (2016) Aromatase inhibitory activity of geranylated coumarins, mammeasins C and D, isolated from the flowers of Mammea siamensis. Chem Pharm Bull 64:880–885

    Article  CAS  Google Scholar 

  65. Luo F, Manse Y, Chaipech S, Pongpiriyadacha Y, Muraoka O, Morikawa T (2022) Phytochemicals with chemopreventive activity obtained from the Thai medicinal plant Mammea siamensis (Miq.) T. Anders.: isolation and structure determination of new prenylcoumarins with inhibitory activity against aromatase. Int J Mol Sci 23:11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campbell DR, Kurzer MS (1993) Flavonoid inhibition of aromatase enzyme activity in human preadipocytes. J Steroid Biochem Molec Biol 46:381–388

    Article  CAS  PubMed  Google Scholar 

  67. Bajgai SP, Prachryawarakorn V, Mahidol C, Ruchirawat S, Kittakoop P (2011) Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry 72:2062–2067

    Article  CAS  PubMed  Google Scholar 

  68. Balam FH, Ahmadi ZS, Ghorbani A (2020) Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): a systematic review. Heliyon 6:e03557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morikawa T, Luo F, Manse Y, Sugita H, Saeki S, Chaipech S, Pongpiriyadacha Y, Muraoka O, Ninomiya K (2020) Geranylated coumarins from Thai medicinal plant Mammea siamensis with testosterone 5α-reductase inhibitory activity. Front Chem 8:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sörensen JS, Sörensen NA (1954) Studies related to naturally occurring acetylene compounds. XIX. The isolation of 1-acetoxy-n-trideca-2:10:12-triene-4:6:8-triyne from Carlina vulgaris L. Acta Chem Scand 8:1763–1768

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully wish to thank the Division of Joint Research Center, Kindai University for the NMR and MS measurements, as well as Editage (www.editage.com) for English language editing.

Funding

This work is supported by the JSPS KAKENHI, Japan [Grant Number 22K06688 (T.M.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Morikawa.

Ethics declarations

Conflicts of interest

Author A. C. is an employee of Xinjiang Shengming Heli High Tech Co., Ltd., while the others, F. L., Y. M., S. I., S. N., T. W., and T. M., have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1185 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Manse, Y., Ishikawa, S. et al. Aromatase inhibitors isolated from a flowering tea, snow Chrysanthemum (the capitula of Coreopsis tinctoria Nutt.). J Nat Med 77, 387–396 (2023). https://doi.org/10.1007/s11418-022-01678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01678-3

Keyword

Navigation