Skip to main content
Log in

Isolation and evaluation of trypanocidal activity of sesquiterpenoids, flavonoids, and lignans in Artemisia sieversiana collected in Mongolia

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Artemisia sieversiana is an annual herbaceous plant distributed throughout Central and East Eurasia and is regarded as an undesirable forage plant in Mongolia. It affects livestock, so information about its chemical composition is needed. We isolated three new sesquiterpenoids (13) and known compounds from A. sieversiana and investigated their activities. The absolute configuration of 1 was established using single-crystal X-ray diffraction crystallography, and its configuration differed from those of reported compounds with similar structures. Two additional new sesquiterpenoids (2 and 3) with similar structures were identified, and their configurations were determined. The trypanocidal activities of the isolated compounds (118) against Trypanosoma congolense and the pathogen responsible for fatal trypanosomosis in animals were estimated. Flavonoids and lignans were identified as active compounds with IC50 values ranging from 2.9 to 90.2 µM

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ligaa U (2005) Medicinal plants of Mongolia used in Western and Eastern medicine. KCA, Korea, pp 198–199

    Google Scholar 

  2. Damiran D (2005) Palatability of Mongolian rangeland plants. Eastern Oregon agricultural research center, Oregon, p 28

    Google Scholar 

  3. Li X, Xiao X, Sun H, He S, Yang P, Liu Z (2014) Identification and purification of major allergens in Artemisia sieversiana pollen. Chin J Immunol 7:913–916

    Google Scholar 

  4. Ministry of food, agriculture and light industry of Mongolia. Available at https://mofa.gov.mn/exp/blog/10/253. Accessed 12 Feb 2020

  5. Japan International Cooperation Agency (JICA). Data collection survey for agriculture and livestock sector in Mongolia; 2017. Available at https://openjicareport.jica.go.jp/340/340/340_115_12285466.html. Accessed 14 Feb 2020

  6. Liu S-J, Liao Z-X, Tang Z-S, Cui C-L, Liu H-B, Liang Y-N, Zhang Y, Shi H-X, Liu Y-R (2017) Phytochemicals and biological activities of Artemisia sieversiana. Phytochem Rev 16:441–460

    Article  CAS  Google Scholar 

  7. Nurbek S, Murata T, Buyankhishig B, Davaapurev B, Ts B, Batkhuu J (2019) The seasonal variation for chemical constituents of Artemisia sieversiana. Mong J Agric Sci 28:75–80

    Google Scholar 

  8. Tan RX, Lu H, WolfenderYu J-LTT, Zheng WF, Yang L, Gafner S, Hostettmann K (1999) Mono- and sesquiterpenes and antifungal constituents from Artemisia Species. Planta Med 65:64–67

    Article  CAS  Google Scholar 

  9. Beauhaire J, Fourrey J-L (1982) Structures of the artabsinolides; photo-oxygenation studies on artabsin. J Chem Soc Perkin Trans 1:861–864

    Article  Google Scholar 

  10. Bohlmann F, Ang W, Trinks C, Jakupovic J, Huneck S (1985) Dimeric guaianolides from Artemisia sieversiana. Phytochemistry 24:1009–1015

    Article  CAS  Google Scholar 

  11. Turak A, Shi S-P, Jiang Y, Tu P-F (2014) Dimeric guaianolides from Artemisia absinthium. Phytochemistry 105:109–114

    Article  CAS  Google Scholar 

  12. Kim JH, Cho YH, Park SM, Lee KM, Lee JJ, Lee BC, Pyo HB, Song KS, Park HD, Yun YP (2004) Antioxidants and inhibitor of matrix metalloproteinase-1 expression from leaves of Zostera marina L. Arch Pharm Res 27:177–183

    Article  CAS  Google Scholar 

  13. Kong C, Liang W, Xu X, Hu F, Wang P, Jiang Y (2004) Release and activity of allelochemicals from allelopathic rice seedlings. J Agric Food Chem 52:2861–2865

    Article  CAS  Google Scholar 

  14. Sy L-K, Brown GD (1998) Three sesquiterpenes from Artemisia annua. Phytochemistry 48:1207–1211

    Article  CAS  Google Scholar 

  15. Gođevac D, Stanković J, Novaković M, Anđelković B, Dajić-Stevanović Z, Petrović M, Stanković M (2015) Phenolic compounds from Atriplex littoralis and their radiation-mitigating activity. J Nat Prod 78:2198–2204

    Article  Google Scholar 

  16. Beck MA, Häberlein H (1999) Flavonol glycosides from Eschscholtzia californica. Phytochemistry 50:329–332

    Article  CAS  Google Scholar 

  17. MacRae WD, Towers GHN (1985) Non-alkaloidal constituents of Virola elongata bark. Phytochemistry 24:561–566

    Article  CAS  Google Scholar 

  18. Miyazawa M, Kasahara H, Kameoka H (1994) Microbial oxidation of (+)​-​epimagnolin A by Aspergillus niger. Phytochemistry 35:1191–1193

    Article  CAS  Google Scholar 

  19. Bai H, Li S, Yin F, Hu L (2005) Isoprenylated naphthoquinone dimers firmianones A, B, and C from Firmiana platanifolia. J Nat Prod 68:1159–1163

    Article  CAS  Google Scholar 

  20. Solís PN, Olmedo D, Nakamura N, Calderón ÁI, Hattori M, Gupta MP (2005) A new larvicidal lignan from Piper fimbriulatum. Pharm Biol 43:378–381

    Article  Google Scholar 

  21. Li C-Y, Chow TJ, Wu T-S (2005) The epimerization of sesamin and asarinin. J Nat Prod 68:1622–1624

    Article  CAS  Google Scholar 

  22. Ahmed AA, Mahmoud AA, Ali ET, Tzakou O, Couladis M, Mabry TJ, Gáti T, Tóth G (2002) Two highly oxygenated eudesmanes and ten lignans from Achillea holosericea. Phytochemistry 59:851–856

    Article  CAS  Google Scholar 

  23. Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62:229–237

    Article  CAS  Google Scholar 

  24. Iwai K, Kishimoto N, Kakino Y, Mochida K, Fujita T (2004) In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem 52:4893–4898

    Article  CAS  Google Scholar 

  25. Maruta Y, Kawabata J, Niki R (1995) Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.). J Agric Food Chem 43:2592–2595

    Article  CAS  Google Scholar 

  26. Liu S-J, Liao Z-X, Liu C, Ji L-J, Sun H-F (2014) Two new sesquiterpenes from Artemisia sieversiana. Fitoterapia 97:43–49

    Article  CAS  Google Scholar 

  27. Feng Z-M, Song S, Xia P-F, Jiang J-S, Zhang P-C (2009) Three new sesquiterpenoids from Chrysanthemum indicum L. Helv Chim Acta 92:1823–1828

    Article  CAS  Google Scholar 

  28. Sigstad EE, Catalán CAN, Gutiérrez AB, Díaz JG, Goedken VL, Herz W (1991) Guaianlides and germacranolides from Stevia grisebachiana. Phytochemistry 30:1933–1940

    Article  CAS  Google Scholar 

  29. Cogo J, Caleare AO, Ueda-Nakamura T, Filho BPD, Ferreira ICP, Nakamura CV (2012) Trypanocidal activity of guaianolide obtained from Tanacetum parthenium (L.) Schultz-Bip. and its combinational effect with benznidazole. Phytomedicine 20:59–66

    Article  CAS  Google Scholar 

  30. Mieri MD, Kaiser M, Brun R, Thormann U, Imanidis G, Hamburger M (2015) Anti-trypanosomal cadinanes synthesized by transannular cyclization of the natural sesquiterpene lactone nobilin. Bioorg Med Chem 23:1521–1529

    Article  Google Scholar 

  31. Cockram PE, Smith TK (2018) Active natural product scaffolds against Trypanosomatid parasites: a review. J Nat Prod 81:2138–2154

    Article  CAS  Google Scholar 

  32. Odonbayar B, Murata T, Suganuma K, Ishikawa Y, Buyankhishig B, Batkhuu J, Sasaki K (2019) Acylated lignans isolated from Brachanthemum gobicum and their trypanocidal activity. J Nat Prod 82:774–784

    Article  CAS  Google Scholar 

  33. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2015) SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst A71:3–8

    Google Scholar 

  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  36. Gibson W (2012) The origins of the trypanosome genome strains Trypanosoma brucei brucei TREU 927, T. b. gambiense DAL 972, T. vivax Y486 and T. congolense IL3000. Parasit Vector 5:71

    Article  Google Scholar 

  37. Suganuma K, Allamanda P, Hakimi H, Zhou M, Angeles JM, Kawazu S, Inoue N (2014) Establishment of ATP-based luciferase viability assay in 96-Well Plate for Trypanosoma congolense. J Vat Med Sci 76:1437–1441

    Article  CAS  Google Scholar 

  38. Banzragchgarav O, Murata T, Odontuya G, Buyankhishig B, Suganuma K, Davaapurev B, Inoue N, Batkhuu J, Sasaki K (2016) Trypanocidal activity of 2,5-diphenyloxazoles isolated from the roots of Oxytropis lanata. J Nat Prod 79:2933–2940

    Article  CAS  Google Scholar 

  39. Hirumi H, Hirumi K (1991) In vitro cultivation of Trypanosoma congolense bloodstream forms in the absence of feeder cell layers. Parasitology 102:225–236

    Article  Google Scholar 

Download references

Acknowledgement

We thank Ms. S. Kasai, Mr. S. Sato, and Mr. T. Matsuki, Tohoku Medical and Pharmaceutical University, for assistance with the compound isolations and the MS measurements. This work was supported by the Consulting service project from the Ministry of Food, Agriculture and Light Industry of Mongolia (190812/04.294). This work was financed by a grant from JSPS Kakenhi (JP19K16397), JICA M-JEED project, JST/JICA SATREPS, AMED/JICA SATREPS, the Kanno Foundation of Japan, a Cooperative Research Grant (31-joint-5) from the National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine. The authors would like to thank Enago for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Murata.

Ethics declarations

Conflict of interest

The authors indicate that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurbek, S., Murata, T., Suganuma, K. et al. Isolation and evaluation of trypanocidal activity of sesquiterpenoids, flavonoids, and lignans in Artemisia sieversiana collected in Mongolia. J Nat Med 74, 750–757 (2020). https://doi.org/10.1007/s11418-020-01429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01429-2

Keywords

Navigation