Skip to main content

Advertisement

Log in

Selective inhibition of P-gp transporter by goniothalamin derivatives sensitizes resistant cancer cells to chemotherapy

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Overexpression of efflux transporters of the ATP-binding cassette (ABC) transporter family, primarily P-glycoprotein (P-gp), is a frequent cause of multidrug resistance in cancer and leads to failure of current chemotherapies. Thus, identification of selective P-gp inhibitors might provide a basis for the development of novel anticancer drug candidates. The natural product goniothalamin and 21 derivatives were characterized regarding their ability to inhibit ABC transporter function. Among the goniothalamins, selective inhibitors of P-gp were discovered. The two most potent inhibitors (R)-3 and (S)-3 displayed the ability to increase intracellular accumulation of doxorubicin, thereby sensitizing P-gp-overexpressing tumor cells to chemotherapy by decreasing doxorubicin IC50 value up to 15-fold. Molecular docking studies indicated these compounds to inhibit P-gp by acting as transporter substrates. In conclusion, our findings revealed a novel role of goniothalamin derivatives in reversing P-gp-mediated chemotherapy resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ABC:

ATP-binding cassette

BCRP:

Breast cancer resistance protein

DMSO:

Dimethylsulfoxide

MDR:

Multidrug resistance

MRP1:

Multidrug resistance-associated protein 1

P-gp:

P-glycoprotein

SAR:

Structure–activity relationship

References

  1. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. https://doi.org/10.1038/nrc706

    Article  CAS  PubMed  Google Scholar 

  2. Khamisipour G, Jadidi-Niaragh F, Jahromi AS et al (2016) Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumor Biol 37:10021–10039. https://doi.org/10.1007/s13277-016-5059-1

    Article  CAS  Google Scholar 

  3. Gillet J-P, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. In: Zhou J (ed) Multi-drug resistance in cancer. Humana Press, Totowa, pp 47–76

    Chapter  Google Scholar 

  4. Bräutigam M, Teusch N, Schenk T et al (2015) Selective inhibitors of glutathione transferase P1 with trioxane structure as anticancer agents. Chem Med Chem 10:629–639. https://doi.org/10.1002/cmdc.201402553

    Article  CAS  PubMed  Google Scholar 

  5. El-Awady R, Saleh E, Hashim A et al (2016) The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Front Pharmacol 7:535. https://doi.org/10.3389/fphar.2016.00535

    Article  CAS  PubMed  Google Scholar 

  6. Cordon-Cardo C, O’Brien JP, Boccia J et al (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38:1277–1287. https://doi.org/10.1177/38.9.1974900

    Article  CAS  PubMed  Google Scholar 

  7. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127. https://doi.org/10.2217/14622416.9.1.105

    Article  CAS  PubMed  Google Scholar 

  8. Lu JF, Pokharel D, Bebawy M (2015) MRP1 and its role in anticancer drug resistance. Drug Metab Rev 47:406–419. https://doi.org/10.3109/03602532.2015.1105253

    Article  CAS  PubMed  Google Scholar 

  9. Westover D, Li F (2015) New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. J Exp Clin Cancer Res 34:159. https://doi.org/10.1186/s13046-015-0275-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hlubucek JR, Robertson AV (1967) (+)-(5S)-δ-Lactone of 5-hydroxy-7-phenylhepta-2,6-dienoic acid, a natural product from Cryptocarya caloneura (Scheff.) Kostermans. Aust J Chem 20:2199. https://doi.org/10.1071/ch9672199

    Article  CAS  Google Scholar 

  11. Jewers K, Davis JB, Dougan J et al (1972) Goniothalamin and its distribution in four Goniothalamus species. Phytochemistry 11:2025–2030. https://doi.org/10.1016/S0031-9422(00)90168-7

    Article  CAS  Google Scholar 

  12. Seyed MA, Jantan I, Bukhari SNA (2014) Emerging anticancer potentials of goniothalamin and its molecular mechanisms. Biomed Res Int 2014:536508. https://doi.org/10.1155/2014/536508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vendramini-Costa DB, Spindola HM, de Mello GC et al (2015) Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life Sci 139:83–90. https://doi.org/10.1016/j.lfs.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  14. Kido LA, Montico F, Sauce R et al (2016) Anti-inflammatory therapies in TRAMP mice: delay in PCa progression. Endocr Relat Cancer 23:235–250. https://doi.org/10.1530/ERC-15-0540

    Article  CAS  PubMed  Google Scholar 

  15. Vendramini-Costa DB, Francescone R, Posocco D et al (2017) Anti-inflammatory natural product goniothalamin reduces colitis-associated and sporadic colorectal tumorigenesis. Carcinogenesis 38:51–63. https://doi.org/10.1093/carcin/bgw112

    Article  CAS  PubMed  Google Scholar 

  16. Innajak S, Mahabusrakum W, Watanapokasin R (2016) Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells. Oncol Rep 35:2851–2858. https://doi.org/10.3892/or.2016.4655

    Article  CAS  PubMed  Google Scholar 

  17. Semprebon SC, Marques LA, D’Epiro GFR et al (2015) Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells. Toxicol In Vitro 30:250–263. https://doi.org/10.1016/j.tiv.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Weber A, Döhl K, Sachs J et al (2017) Synthesis and cytotoxic activities of goniothalamins and derivatives. Bioorg Med Chem 25:6115–6125. https://doi.org/10.1016/j.bmc.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  19. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tajima Y, Nakagawa H, Tamura A, Nitensidine A et al (2014) A guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1. Phytomedicine 21:323–332. https://doi.org/10.1016/j.phymed.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  21. Aller SG, Yu J, Ward A et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. https://doi.org/10.1126/science.1168750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferreira RJ, Ferreira M-JU, dos Santos DJVA (2013) Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–1760. https://doi.org/10.1021/ci400195v

    Article  CAS  PubMed  Google Scholar 

  23. Efferth T, Volm M (2017) Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 91:2515–2538. https://doi.org/10.1007/s00204-017-1938-5

    Article  CAS  PubMed  Google Scholar 

  24. Yu J, Zhou P, Asenso J et al (2016) Advances in plant-based inhibitors of P-glycoprotein. J Enzyme Inhib Med Chem 31:867–881. https://doi.org/10.3109/14756366.2016.1149476

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Erasmus Schneider (Wadsworth Center, New York State Department of Health, Albany, NY, USA) for kindly providing the MCF-7/MX cells.

Funding

This work was funded by the German Federal Ministry for Economic Affairs and Energy (‘ZIM Kooperationsprojekt’ KF3279X01AJ3) and A.W. was supported by a scholarship of the Studienstiftung des deutschen Volkes. The PhD training of J.S. was financed by the graduate program in Pharmacology and Experimental Therapeutics at the University of Cologne, which is financially and scientifically supported by Bayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Teusch.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachs, J., Kadioglu, O., Weber, A. et al. Selective inhibition of P-gp transporter by goniothalamin derivatives sensitizes resistant cancer cells to chemotherapy . J Nat Med 73, 226–235 (2019). https://doi.org/10.1007/s11418-018-1230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1230-x

Keywords

Navigation