Skip to main content

Advertisement

Log in

Anti-inflammatory effects of naturally occurring retinoid X receptor agonists isolated from Sophora tonkinensis Gagnep. via retinoid X receptor/liver X receptor heterodimers

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Retinoid X receptor (RXR) ligands have a wide range of beneficial effects in mouse models of Alzheimer’s disease (AD). Recently accumulated evidence suggests that early neuroinflammation may be a therapeutic target for AD treatment. We therefore investigated the anti-inflammatory effects of the prenylated flavanoids SPF1 and SPF2, which were previously isolated from root of Sophora tonkinensis and identified as potent ligands for RXR, and potential mechanisms involved. SPF1 and SPF2 efficiently reduced interleukin (IL)-1β messenger RNA (mRNA) and IL-6 mRNA levels in lipopolysaccharide-stimulated and tumor necrosis factor-α-stimulated RAW264.7 cells, whereas SPF3—which has a structure similar to SPF1 and SPF2 but no RXR ligand activity—did not exhibit such effects. Intriguingly, the liver X receptor (LXR) ligand T0901317 reduced proinflammatory cytokine mRNA levels, and these effects were potentiated by SPF1. With regard to the mechanism underlying the anti-inflammatory effects, SPF1 induced significant amounts of activating transcription factor 3 (ATF3) mRNA and protein, and this effect was potentiated by T0901317. SPF1 also reduced translocation of nuclear factor κB (NF-κB) into nuclei. The production of proinflammatory cytokines was significantly inhibited by SPF1, and this effect was primarily exerted via RXR/LXR heterodimers. The effects of SPF1 may partly depend on the induction of ATF3, which may bind to the p65 subunit of NF-κB, resulting in reduced translocation of NF-κB into nuclei and reduced NF-κB transcription. Although inflammatory effects mediated by RXR/LXR heterodimers have not been thoroughly investigated, the above-described results shed light on the mechanism of the anti-inflammatory effect via RXR/LXR heterodimer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219

    Article  CAS  Google Scholar 

  2. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167

    Article  CAS  Google Scholar 

  3. Nimmo AJ, Cernak I, Heath DL, Hu X, Bennett CJ, Vink R (2004) Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides 38:40–47

    Article  CAS  PubMed  Google Scholar 

  4. Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Day TA, Walker FR (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24:1058–1068

    Article  CAS  PubMed  Google Scholar 

  5. Brüünsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 23:15–39

    Article  PubMed  Google Scholar 

  6. Cuello AC (2017) Early and late CNS inflammation in Alzheimer’s disease: two extremes of a continuum? Trends Pharmacol Sci 38:956–966

    Article  CAS  PubMed  Google Scholar 

  7. Butchart J, Holmes C (2012) Systemic and central immunity in Alzheimer’s disease: therapeutic implications. CNS Neurosci Ther 18:64–76

    Article  CAS  PubMed  Google Scholar 

  8. Holmes C (2013) Systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol 39:51–68

    Article  CAS  PubMed  Google Scholar 

  9. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10:365–376

    Article  CAS  PubMed  Google Scholar 

  11. Moutinho M, Landreth GE (2017) Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J Lipid Res 58:1937–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mandrekar-Colucci S, Karlo JC, Landreth GE (2012) Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 32:10117–10128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE (2015) Activation of the nuclear receptor PPARδ is neuroprotective in a transgenic mouse model of Alzheimer’s disease through inhibition of inflammation. J Neuroinflamm 12:7

    Article  CAS  Google Scholar 

  14. Mariani MM, Malm T, Lamb R, Jay TR, Neilson L, Casali B, Medarametla L, Landreth GE (2017) Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease. Sci Rep 7:42270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Katsuki H, Kurimoto E, Takemori S, Kurauchi Y, Hisatsune A, Isohama Y, Izumi Y, Kume T, Shudo K, Akaike A (2009) Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J Neurochem 110:707–718

    Article  CAS  PubMed  Google Scholar 

  16. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver X receptors. Proc Natl Acad Sci USA 104:10601–10606

    Article  CAS  PubMed  Google Scholar 

  17. Casali BT, Corona AW, Mariani MM, Karlo JC, Ghosal K, Landreth GE (2015) Omega-3 fatty acids augment the actions of nuclear receptor agonists in a mouse model of Alzheimer’s disease. J Neurosci 35:9173–9181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corona AW, Kodoma N, Casali BT, Landreth GE (2015) ABCA1 is necessary for bexarotene-mediated clearance of soluble amyloid beta from the hippocampus of APP/PS1 mice. J Neuroimmune Pharmacol 11(1):61–72

    Article  PubMed  PubMed Central  Google Scholar 

  19. Savage JC, Jay T, Goduni E, Quigley C, Mariani MM, Malm T, Ransohoff RM, Lamb BT, Landreth GE (2015) Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer’s disease. J Neurosci 35:6532–6543

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cramer PE, Cirrito JR, Wesson DW, Lee CYD, Kario JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landreth GE, Cramer PE, Lakner MM, Cirrito JR, Wesson DW, Brunden KR, Wilson DA (2013) Response to comments on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science 340:924-g

    Article  CAS  PubMed  Google Scholar 

  22. Mouier A, Georgiev D, Nam KN, Fitz NF, Castranio EL, Wolfe CM, Cronican AA, Schug J, Lefterov I, Koldamova R (2015) Bexarotene-activated retinoid X receptors regulate neuronal differentiation and dendritic complexity. J Neurosci 35:11862–11876

    Article  CAS  Google Scholar 

  23. Pinaire JA, Reifel-Miller A (2007) Therapeutic potential of retinoid X receptor modulators for the treatment of the metabolic syndrome. PPAR Res 2007:94156

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Ogilvie KM, Klausing K, Lawson MA, Jolley D, Li D, Bilakovics J, Pascual B, Hein N, Urcan M, Leibowitz MD (2002) Mechanism of selective retinoid X receptor agonist-induced hypothyroidism in the rat. Endocrinology 143:2880–2885

    Article  CAS  PubMed  Google Scholar 

  25. Lenhard JM, Lancaster ME, Paulik MA, Weiel JE, Binz JG, Sundseth SS, Gaskill BA, Lightfoot RM, Brown HR (1999) The RXR agonist LG100268 causes hepatomegaly, improves glycaemic control and decreases cardiovascular risk and cachexia in diabetic mice suffering from pancreatic beta-cell dysfunction. Diabetologia 42:545–554

    Article  CAS  PubMed  Google Scholar 

  26. Al Mamun Bhuyan A, Bissinger R, Cao H, Lang F (2016) Triggering of suicidal erythrocyte death by bexarotene. Cell Physiol Biochem 40:1239–1251

    Article  CAS  PubMed  Google Scholar 

  27. Inoue M, Tanabe H, Nakashima K, Ishida Y, Kotani H (2014) Rexinoids isolated from Sophora tonkinensis with a gene expression profile distinct from the synthetic rexinoid bexarotene. J Nat Prod 77:1670–1677

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Nakashima K, Hirai T, Inoue M (2019) Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J Nat Med 73:154–162

  29. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  CAS  PubMed  Google Scholar 

  30. Kwon JW, Kwon HK, Shin HJ, Choi YM, Anwar MA, Choi S (2015) Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-κB. Sci Rep 5:14470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cameron B, Landreth GE (2010) Inflammation, microglia and Alzheimer’s disease. Neurobiol Dis 37:503–509

    Article  CAS  Google Scholar 

  32. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91:752–756

    Article  CAS  PubMed  Google Scholar 

  33. Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269:12940–12946

    CAS  PubMed  Google Scholar 

  34. Palvimo JJ, Reinkainen P, Ikonen T, Kallio PJ, Moilanen A, Janne OA (1996) Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem 271:24151–24156

    Article  CAS  PubMed  Google Scholar 

  35. Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM, Rosenfeld MG, Glass CK (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPAR. Mol Cell 25:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JH, Park SM, Kim OS, Lee GS, Woo JH, Park SJ, Joe EH, Jou I (2009) Differential SUMOylation of LXRα and LXRβ mediates transrepression of STAT1 inflammatory signaling in IFN-γ-stimulated brain astrocytes. Mol Cell 35:806–817

    Article  CAS  PubMed  Google Scholar 

  37. Aguirre RS, Karpen SJ (2013) Inflammatory mediators increase SUMOylation of retinoid X receptor α in a c-Jun N-terminal kinase-dependent manner in human hepatocellular carcinoma cells. Mol Pharmacol 84:218–226

    Article  CAS  Google Scholar 

  38. Na SY, Kang BY, Chung SW, Han SJ, Ma X, Trinchieri G, Im SY, Lee JW, Kim TS (1999) Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFκB. J Biol Chem 274:7674–7680

    Article  CAS  PubMed  Google Scholar 

  39. Lee HC, Headley MB, Iseki M, Ikuta K, Ziegler SF (2008) Cutting edge: inhibition of NF-κB-mediated TSLP expression by retinoid X receptor. J Immunol 181:5189–5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, Gratton E, Parks J, Tontonoz (2015) LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4:e08009

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kappus MS, Murphy AJ, Abramowicz S, Ntonga V, Welch CL, Tall AR, Westerterp M (2014) Activation of liver X receptor decreases atherosclerosis in Ldlr−/− mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol 34:279–284

    Article  CAS  PubMed  Google Scholar 

  42. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335

    CAS  PubMed  Google Scholar 

  43. Dulla YAT, Kurauchi Y, Hisatsune A, Seki T, Shudo K, Katsuki H (2016) Regulatory mechanisms of vitamin D3 on production of nitric oxide and pro-inflammatory cytokines in microglial BV-2 cells. Neurochem Res 41:2848–2858

    Article  CAS  PubMed  Google Scholar 

  44. Sanz MJ, Albertos F, Otero E, Juez M, Morcillo EJ, Piqueras L (2012) Retinoid X receptor agonists impair arterial mononuclear cell recruitment through peroxisome proliferator-activated receptor-γ activation. J Immunol 189:411–424

    Article  CAS  PubMed  Google Scholar 

  45. Zhang-Gandhi CX, Drew PD (2007) Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol 183:50–59

    Article  CAS  PubMed  Google Scholar 

  46. Chen Y, Chen LM, Tong Y, You Y (2017) Pharmacological effect and toxicology of Sophorae Tonkinensis Radix et Rhizoma. Zhongguo Zhong Yao Za Zhi 42:2439–2442

    PubMed  Google Scholar 

  47. Chae HS, Yoo H, Choi YH, Choi WJ, Chin YW (2016) Maackiapterocarpan B from Sophora tonkinensis suppresses inflammatory mediators via nuclear factor-κB and mitogen-activated protein kinase pathways. Biol Pharm Bull 39:259–266

    Article  CAS  PubMed  Google Scholar 

  48. Xia W, Luo P, Hua P, Ding P, Li C, Xu J, Zhou H, Gu Q (2018) Discovery of a new pterocarpan-type antineuroinflammatory compound from Sophora tonkinensis through suppression of the TLR4/NFκB/MAPK signaling pathway PU.1 as a potential target. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.8b00243

    Article  PubMed  Google Scholar 

  49. Chae HS, Yoo H, Kim YM, Choi YH, Lee CH, Chin YW (2016) Anti-inflammatory effects of 6,8-diprenyl-7,4′-dihydroxyflavanone from Sophora tonkinensis on lipopolysaccharide-stimulated RAW264.7 cells. Molecules 21:E1049

    Article  CAS  PubMed  Google Scholar 

  50. Huang M, Deng S, Han Q, Zhao P, Zhou Q, Zheng S, Ma X, Xu C, Yang J, Yang X (2016) Hypoglycemic activity and the potential mechanism of the flavonoid rich extract from Sophora tonkinensis Gagnep. in KK-Ay mice. Front Pharmacol 7:288

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grant no. JP17K08352. We thank Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Inoue.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Nakashima, Ki., Hirai, T. et al. Anti-inflammatory effects of naturally occurring retinoid X receptor agonists isolated from Sophora tonkinensis Gagnep. via retinoid X receptor/liver X receptor heterodimers. J Nat Med 73, 419–430 (2019). https://doi.org/10.1007/s11418-018-01277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-01277-1

Keywords

Navigation