Skip to main content
Log in

Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

A diterpenoid diglucoside (12,19-di-O-β-d-glucopyranosyl-11-hydroxyabieta-8,11,13-triene-19-one), isoscutellarein 7-O-[β-d-xylopyranosyl-(1→2)]-β-d-glucopyranoside, isoscutellarein 7-O-[α-l-rhamnopyranosyl-(1→2)]-β-d-glucopyranoside, hypolaetin 7-O-[6″-O-(p-E-coumaroyl)]-β-d-glucopyranoside, hypolaetin 7-O-[6″-O-(E-caffeoyl)]-β-d-glucopyranoside, and 15 known compounds were isolated from aerial parts of the Mongolian medicinal plant Caryopteris mongolica. The cholinesterase-inhibitory activities of the constituents were estimated. The abietane diterpenoids (12-O-demethylcryptojaponol and 6α-hydroxydemethylcryptojaponol) showed potent inhibitory activity against acetylcholinesterase from human erythrocytes and electric eel, and against butyrylcholinesterase from horse serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Batkhuu J, Sanchir C, Ligaa U, Jamsran T (2005) Colored illustrations of Mongolian useful plants, vol 2. Admon, Ulaanbaatar, p 191

    Google Scholar 

  2. Xiao PG, Mayanagi M (1993) A pictorial encyclopedia of Chinese medical herbs, Japanese edition, vol 5. Tokyo, Chuokoron-sha, p 147

    Google Scholar 

  3. Zhang YH, Yang L, Cheng DL (2000) Iridoid glucosides from Caryopteris mongholica. Pharmazie 55:845–847

    CAS  PubMed  Google Scholar 

  4. Dumaa M, Gerelt-Od Y, Puzhao Z, Yinggang L, Javzan S, Selenge D, Zhang G (2012) Two new alkaloids from the aerial parts of Caryopteris mongolica Bunge. Mong J Chem 13:41–45

    Google Scholar 

  5. Ahmad VU, Farooq U, Abbaskhan A, Hussain J, Abbasi MA, Nawaz SA, Choudhary MI (2004) Four new diterpenoids from Ballota limbata. Helv Chim Acta 87:682–689

    Article  CAS  Google Scholar 

  6. Ahmad VU, Khan A, Farooq U, Kousar F, Khan SS, Nawaz SA, Abbasi MA, Choudhary MI (2005) Three new cholinesterase-inhibiting cis-clerodane diterpenoids from Otostegia limbata. Chem Pharm Bull 53:378–381

    Article  CAS  PubMed  Google Scholar 

  7. Thirugnanasampandan R, Jayakumar R, Bai VN, Martin E, Prasad KJR (2008) Antiacetylcholinesterase and antioxidant ent-Kaurene diterpenoid, melissoides from Isodon wightii (Bentham) H. Hara Nat Prod Res 22:681–688

    Article  CAS  PubMed  Google Scholar 

  8. Ertaş A, Öztürk M, Boğa M, Topçu G (2009) Antioxidant and anticholinesterase activity evaluation of ent-kaurane diterpenoids form Sideritis arguta. J Nat Prod 72:500–502

    Article  PubMed  Google Scholar 

  9. Topçu G, Ertaş A, Öztürk M, Dinçel D, Kılıç T, Halfon B (2011) Ent-kaurane diterpenoids isolated from Sideritis congesta. Phytochem Lett 4:436–439

    Article  Google Scholar 

  10. Wong KKK, Ho MTW, Lin HQ, Lau KF, Rudd JA, Chung RCK, Fung KP, Shaw PC, Wan DCC (2010) Cryptotanshinone, an acetylcholinesterase inhibitor from Salvia miltiorrhiza, ameliorates scopolamine-induced amnesia in Morris water maze task. Planta Med 76:228–234

    Article  CAS  PubMed  Google Scholar 

  11. Hung TM, Luan TC, Vinh BT, Cuong TD, Min BS (2011) Labdane-type diterpenoids from Leonurus heterophyllus and their cholinesterase inhibitory activity. Phytother Res 25:611–614

    Article  CAS  PubMed  Google Scholar 

  12. Topçu G, Kolak U, Öztürk M, Boğa M, Hatipoğlu SD, Bahadori F, Çulhaoğlu B, Dirmenci T (2013) Investigation of anticholinesterase activity of a series of Salvia extracts and the constituents of Salvia staminea. Nat Prod J 3:3–9

    Google Scholar 

  13. Çulhaoğlu B, Yapar G, Dirmenci T, Topçu G (2013) Bioactive constituents of Salvia chrysophylla Stapt. Nat Prod Res 27:438–447

    Article  PubMed  Google Scholar 

  14. Campiani G, Fattorusso C, Butini S, Gaeta A, Agnusdei M, Gemma S, Persico M, Catalanotti B, Savini L, Nacci V, Novellino E, Holloway HW, Greig NH, Belinskaya T, Fedorko JM, Sazena A (2005) Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors. J Med Chem 48:1919–1929

    Article  CAS  PubMed  Google Scholar 

  15. Çokuğraş AN (2003) Butyrylcholinesterase: structure and physiological importance. Turk J Biochem 28:54–61

    Google Scholar 

  16. Darvish S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C (2012) Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol 71:2–14

    Article  Google Scholar 

  17. Remya C, Dileep KV, Tintu I, Variyer EJ, Sadasivan C (2012) Design of potent inhibitors of acetylcholinesterase using morin as the starting compound. Front Life Sci 6:107–117

    Article  CAS  Google Scholar 

  18. Siddiqui SA, Sen AB (1971) Hypolaetin 7-glucoside from Juniperus macropoda. Phytochemistry 10:434–435

    Article  CAS  Google Scholar 

  19. Rodríguez-Lyon ML, Díaz-Lanza AM, Bernabé M, Villaescusa-Castillo L (2000) Flavone glycosides containing acetylated sugars from Sideritis hyssopifolia. Magn Reson Chem 38:684–687

    Article  Google Scholar 

  20. Tian Y, Sun LM, Liu XQ, Li B, Wang Q, Dong JX (2010) Anti-HBV active flavone glucosides from Euphorbia humifusa Willd. Fitoterapia 81:799–802

    Article  CAS  PubMed  Google Scholar 

  21. Miyazawa M, Hisama M (2003) Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci Biotechnol Biochem 67:2091–2099

    Article  CAS  PubMed  Google Scholar 

  22. Yonghong Z, Dongliang C (2001) Studies on the chemical constituents of Caryopteris mongholica. Lanzhou Daxue Xuebao Ziran Kexueban 37:69–71

    Google Scholar 

  23. Murata T, Miyase T, Yoshizaki F (2011) New phenolic compounds from Meehania urticifolia. J Nat Med 65:385–390

    Article  CAS  PubMed  Google Scholar 

  24. Lee MH, Son YK, Han YN (2002) Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch Pharm Res 25:842–850

    Article  CAS  PubMed  Google Scholar 

  25. Djoukeng JD, Arbona V, Argamasilla R, Gomez-Cadenas A (2008) Flavonoid profiling in leaves of Citrus Genotypes under different environmental situations. J Agric Food Chem 56:11087–11097

    Article  CAS  PubMed  Google Scholar 

  26. Li YL, Li J, Wang NL, Yao XS (2008) Flavonoids and a new polyacetylene from Bidens parviflora Willd. Molecules 13:1931–1941

    Article  CAS  PubMed  Google Scholar 

  27. Rodríguez B (2003) 1H and 13C NMR spectral assignments of some natural abietane diterpenoids. Magn Reson Chem 41:741–746

    Article  Google Scholar 

  28. Fraga BM, Díaz CE, Guadaño A, González-Coloma A (2005) Diterpenes from Salvia broussonetii roots and their insecticidal activity. J Agric Food Chem 53:5200–5206

    Article  CAS  PubMed  Google Scholar 

  29. Park S, Son MJ, Yook CS, Jin C, Lee YS, Kim HJ (2014) Chemical constituents from aerial parts of Caryopteris incana and cytoprotective effects in human HepG2 cells. Phytochemistry 101:83–90

    Article  CAS  PubMed  Google Scholar 

  30. Murata T, Arai Y, Miyase T, Yoshizaki F (2009) An alkaloidal glycoside and other constituents from Leucosceptrum japonicum. J Nat Med 63:402–407

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka T, Nakashima T, Ueda T, Tomii K, Kouno I (2007) Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem Pharm Bull 55:899–901

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Zhu H, Zhang S, Zhang X, Yu Q, Xuan L (2008) Abietane diterpenoids from Clerodendrum bungei. J Nat Prod 71:755–759

    Article  PubMed  Google Scholar 

  33. Nakanishi T, Iida N, Inatomi Y, Murata H, Inada A, Murata J, Lang FA, Iinuma M, Tanaka T (2004) Neolignan and flavonoid glycosides in Juniperus communis var, depressa. Phytochemistry 65:207–213

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell KA, Markham KR, Bayly MJ (2001) Flavonoid characters contributing to the taxonomic revision of the Hebe parviflora complex. Phytochemistry 56:453–461

    Article  CAS  PubMed  Google Scholar 

  35. Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62:229–237

    Article  CAS  PubMed  Google Scholar 

  36. Lenherr A, Mabry TJ (1987) Acetylated allose-containing flavonoid glucosides from Stachys anisochila. Phytochemistry 26:1185–1187

    Article  CAS  Google Scholar 

  37. Choudhary MI, Yousuf S, Nawaz SA, Ahmed S, Rahman A (2004) Cholinesterase inhibiting withanolides from Withania somnifera. Chem Pharm Bull 52:1358–1361

    Article  CAS  PubMed  Google Scholar 

  38. Ellman GL, Courtney KD, Andres JRV, Featherstone M (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr S. Sato and Mr T. Matsuki, Tohoku Pharmaceutical University, for assisting with the MS measurements. This work was supported by grants from the Kanae Foundation for the promotion of medical science and JSPS KAKENHI Grant Number 26860068. This work is partially supported by the Honda Foundation of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Murata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murata, T., Selenge, E., Oikawa, S. et al. Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica . J Nat Med 69, 471–478 (2015). https://doi.org/10.1007/s11418-015-0908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0908-6

Keywords

Navigation