Skip to main content
Log in

Local and systemic toxicity of Echis carinatus venom: neutralization by Cassia auriculata L. leaf methanol extract

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Viper bites cause high morbidity and mortality especially in tropical and subtropical regions, affecting a large number of the rural population in these areas. Even though anti-venoms are available, in most cases they fail to tackle viper venom-induced local manifestations that persist even after anti-venom administration. Several studies have been reported the use of plant products and approved drugs along side anti-venom therapy for efficient management of local tissue damage. In this regard, the present study focuses on the protective efficacy of Cassia auriculata L. (Leguminosae) against Echis carinatus venom (ECV) induced toxicity. C. auriculata is a traditional medicinal plant, much valued in alternative medicine for its wide usage in ayurveda, naturopathy, and herbal therapy. Further, it has been used widely by traditional healers for treatment of snake and scorpion bites in the Western Ghats of Karnataka, India. In the present study, C. auriculata leaf methanol extract (CAME) significantly inhibited enzymatic activities of ECV proteases (96 ± 1 %; P = 0.001), PLA2 (45 ± 5 %; P = 0.01) and hyaluronidases (100 %; P = 0.0003) in vitro and hemorrhage, edema and myotoxicity in vivo. Further, CAME effectively reduced the lethal potency of ECV and increased the survival time of mice by ~6 times (17 vs 3 h). These inhibitory potentials of CAME towards hydrolytic enzymes, mortal and morbid symptoms of ECV toxins clearly substantiates the use by traditional healers of C. auriculata as a folk medicinal remedy for snakebite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a,b
Fig. 9

Similar content being viewed by others

Abbreviations

CAME:

Cassia auriculata leaf methanol extract

CK:

Creatine kinase

ECM:

Extracellular matrix

ECV:

Echis carinatus venom

LDH:

Lactate dehydrogenase

PLA2 :

Phospholipase A2

PPP:

Platelet-poor plasma

References

  1. Gutierrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, Harrison RA (2013) The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis 7:e2162

    Article  PubMed Central  PubMed  Google Scholar 

  2. Simpson ID, Norris RL (2007) Snakes of medical importance in India: is the concept of the “Big 4″ still relevant and useful? Wilderness Environ Med 18:2–9

    Article  PubMed  Google Scholar 

  3. Urs NA, Yariswamy M, Joshi V, Nataraju A, Gowda TV, Vishwanath BS (2013) Implications of phytochemicals in snakebite management: present status and future prospective. Toxin Rev 33:60–83

    Google Scholar 

  4. Gomes A, Das R, Sarkhel S, Mishra R, Mukherjee S, Bhattacharya S, Gomes A (2010) Herbs and herbal constituents active against snake bite. Indian J Exp Biol 48:865–878

    PubMed  Google Scholar 

  5. Pandey S, Toppo E, Chauhan P (2011) Comparative study of antitoxin activity of Calotropis gigentea Linn and Cassia fistula Linn against Naja naja (cobra) venom. Intl J Green Pharm 5:292–295

    Article  Google Scholar 

  6. Dey A, De JN (2012) Traditional use of plants against snakebite in Indian subcontinent: a review of the recent literature. Afr J Tradit Complement Altern Med 9:153–174

    PubMed Central  PubMed  Google Scholar 

  7. Joy V, Peter M, YesuRaj J (2012) Ramesh. Medicinal values of avaram (Cassia auriculata Linn.): a review. Int J Curr Pharm Res 4:1–3

    Google Scholar 

  8. Ratnam KV, Raju RV (2008) Folk remedies for insect bites from Gundla Brahmeswaram wildlife sanctuary, Andhra Pradesh. Indian J Tradit Knowl 7:436–437

    Google Scholar 

  9. Kainsa S, Kumar P, Rani P (2012) Pharmacological potentials of Cassia auriculata and Cassia fistula plants: a review. Pak J Biol Sci 15:408–417

    Article  PubMed  Google Scholar 

  10. Surveswaran S, Cai Y-Z, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953

    Article  CAS  Google Scholar 

  11. Anandan A, Eswaran R, Doss A, Sangeetha G, Anand S (2011) Chemical compounds investigation of Cassia auriculata leaves—a potential folklore medicinal plant. Bull Environ Pharmacol Life Sci 1:20–23

    Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  13. Veerachari U, Bopaiah D (2012) Phytochemical investigation of the ethanol, methanol and ethyl acetate leaf extracts of six cassia species. Int J Pharma Bio Sci 3:260–270

    Google Scholar 

  14. Meier J, Theakston RD (1986) Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon 24:395–401

    Article  CAS  PubMed  Google Scholar 

  15. Murata Y, Satake M, Suzuki T (1963) Studies on snake venom XII. Distribution of proteinase activities among Japanese and Formosan snake venoms. J Biochem 53:431–437

    CAS  Google Scholar 

  16. Mohamed R, Dharmappa KK, Tarannum S, Jameel NM, Kannum SA, Ashrafulla HS, Rai L, Souza CJ, Shekhar MA, Vishwanath BS (2010) Chemical modification of ascorbic acid and evaluation of its lipophilic derivatives as inhibitors of secretory phospholipase A(2) with anti-inflammatory activity. Mol Cell Biochem 345:69–76

    Article  CAS  PubMed  Google Scholar 

  17. Reissig JL, Storminger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217:959–966

    CAS  PubMed  Google Scholar 

  18. Gowda CD, Shivaprasad HV, Kumar RV, Rajesh R, Saikumari YK, Frey BM, Frey FJ, Sharath BK, Vishwanath BS (2011) Characterization of major zinc containing myonecrotic and procoagulant metalloprotease ‘malabarin’ from non lethal Trimeresurus malabaricus snake venom with thrombin like activity: its neutralization by chelating agents. Curr Top Med Chem 11:2578–2588

    Article  CAS  PubMed  Google Scholar 

  19. Vishwanath BS, Kini RM, Gowda TV (1987) Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid. Toxicon 25:501–515

    Article  CAS  PubMed  Google Scholar 

  20. Yariswamy M, Shivaprasad HV, Joshi V, Nanjaraj Urs AN, Nataraju A, Vishwanath BS (2013) Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice. J Ethnopharmacol 149:377–383

    Article  CAS  PubMed  Google Scholar 

  21. Girish KS, Jagadeesha DK, Rajeev KB, Kemparaju K (2002) Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation. Mol Cell Biochem 240:105–110

    Article  CAS  PubMed  Google Scholar 

  22. Ouyang C, Teng CM (1976) Fibrinogenolytic enzymes of Trimeresurus mucrosquamatus venom. Biochim Biophys Acta 420:298–308

    Article  CAS  PubMed  Google Scholar 

  23. Rajesh R, Shivaprasad HV, Gowda CD, Nataraju A, Dhananjaya BL, Vishwanath BS (2007) Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med 73:1061–1067

    Article  CAS  PubMed  Google Scholar 

  24. Condrea E, Yang CC, Rosenberg P (1983) Anticoagulant activity and plasma phosphatidylserine hydrolysis by snake venom phospholipases A2. Thromb Haemost 49:151

    CAS  PubMed  Google Scholar 

  25. Cantin CM, Moreno MA, Gogorcena Y (2009) Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 57:4586–4592

    Article  CAS  PubMed  Google Scholar 

  26. Wulf L, Nagel C (1976) Analysis of phenolic acids and flavonoids by high-pressure liquid chromatography. J Chromatogr A 116:271–279

    Article  CAS  Google Scholar 

  27. Mukherjee AK (2012) Green medicine as a harmonizing tool to antivenom therapy for the clinical management of snakebite: the road ahead. Indian J Med Res 136:10

    PubMed Central  PubMed  Google Scholar 

  28. Ushakumari J, Ramana V, Reddy K (2012) Ethnomedicinal plants used for wounds and snake-bites by tribals of kinnerasani region, AP. India J Pharmacogn 3:79

    Google Scholar 

  29. Escalante T, Rucavado A, Fox JW, Gutierrez JM (2011) Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Prot 74:1781–1794

    Article  CAS  Google Scholar 

  30. Kornalik F, Blomback B (1975) Prothrombin activation induced by Ecarin—a prothrombin converting enzyme from Echis carinatus venom. Thromb Res 6:57–63

    CAS  PubMed  Google Scholar 

  31. Yamada D, Sekiya F, Morita T (1996) Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J Biol Chem 271:5200–5207

    Article  CAS  PubMed  Google Scholar 

  32. Hiremath V, Yariswamy M, Nanjaraj Urs AN, Joshi V, Suvilesh KN, Ramakrishnan C, Nataraju A, Vishwanath BS (2013) Differential action of Indian BIG FOUR snake venom toxins on blood coagulation. Toxin Rev 33:23–32

    Article  Google Scholar 

  33. Gutierrez JM, Rucavado A (2000) Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82:841–850

    Article  CAS  PubMed  Google Scholar 

  34. Baldo C, Jamora C, Yamanouye N, Zorn TM, Moura-da-Silva AM (2010) Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis. PLoS Negl Trop Dis 4:e727

    Article  PubMed Central  PubMed  Google Scholar 

  35. Maruyama M, Sugiki M, Yoshida E, Shimaya K, Mihara H (1992) Broad substrate specificity of snake venom fibrinolytic enzymes: possible role in haemorrhage. Toxicon 30:1387–1397

    Article  CAS  PubMed  Google Scholar 

  36. Lomonte B, Gutierrez JM (2011) Phospholipases A2 from viperidae snake venoms: how do they induce skeletal muscle damage? Acta Chim Slov 58:647–659

    CAS  PubMed  Google Scholar 

  37. Arruda EZ, Silva NM, Moraes RA, Melo PA (2002) Effect of suramin on myotoxicity of some crotalid snake venoms. Braz J Med Biol Res 35:723–726

    Article  CAS  PubMed  Google Scholar 

  38. Nok AJ, Balogun E, Lori JA, Abubakar MS (2002) Inhibition of Naja nigricolis venom acidic phospholipase A2 catalysed hydrolysis of ghost red blood cells by columbin. J Enzyme Inhib Med Chem 17:55–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT), New Delhi (Order No. BT/43/NE/TBP/2010; Dated 14-03-2011), SAP and UGC-BSR New Delhi.

Conflict of interest

The authors have no conflicts of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Vishwanath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanjaraj Urs, A.N., Yariswamy, M., Joshi, V. et al. Local and systemic toxicity of Echis carinatus venom: neutralization by Cassia auriculata L. leaf methanol extract. J Nat Med 69, 111–122 (2015). https://doi.org/10.1007/s11418-014-0875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0875-3

Keywords

Navigation