Aarnio, M., Lindblom-Ylänne, S., Nieminen, J., & Pyörälä, E. (2013). Dealing with conflicts on knowledge in tutorial groups. Advances in Health Sciences Education, 18(2), 215–230
Google Scholar
Agélii Genlott, A., Grönlund, Ã., & Viberg, O. (2019). Disseminating digital innovation in school—leading second-order educational change. Education and Information Technologies, 24(5), 3021–3039
Google Scholar
Anderson, R. C., Nguyen-Jahiel, K., McNurlen, B., Archodidou, A., Kim, S. Y., Reznitskaya, A. … Gilbert, L. (2001). The snowball phenomenon: Spread of ways of talking and ways of thinking across groups of children. Cognition and Instruction, 19(1), 1–46
Google Scholar
Bae, J., & Kim, S. (2014). Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Statistical Mechanics and Its Applications, 395, 549–559
Google Scholar
Baker, M., Andriessen, J., Lund, K., Van Amelsvoort, M., & Quignard, M. (2007). Rainbow: A framework for analysing computer-mediated pedagogical debates. International Journal of Computer-Supported Collaborative Learning, 2(2–3), 315–357
Google Scholar
Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2013). The Diffusion of Microfinance. Science, 341(6144), 1236498–1236498
Google Scholar
Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2019). Using Gossips to Spread Information: Theory and Evidence from Two Randomized Controlled Trials. Review of Economic Studies, 86(6), 2453–2490
Google Scholar
Barabási, A. L. (2013). Network science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1987), 20120375. https://doi.org/10.1098/rsta.2012.0375
Bell, P. (2013). Using Argument Map Representations to Make Thinking Visible for Individuals and Groups. In Cscl 2 (pp. 471–528). Routledge. https://doi.org/10.4324/9781410601544-24
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71
Google Scholar
Borgatti, S. P., & Brass, D. J. (2019). Centrality: Concepts and Measures. In Social Networks at Work (pp. 9–22)
Borokhovski, E., Bernard, R. M., Tamim, R. M., Schmid, R. F., & Sokolovskaya, A. (2016). Technology-supported student interaction in post-secondary education: A meta-analysis of designed versus contextual treatments. Computers & Education, 96, 15–28
Google Scholar
Burgess, L. G., Riddell, P. M., Fancourt, A., & Murayama, K. (2018). The Influence of Social Contagion Within Education: A Motivational Perspective. Mind, Brain, and Education, 12(4), 164–174
Google Scholar
Cadima, R., Ojeda, J., & Monguet, J. M. (2012). Social Networks and Performance in Distributed Learning Communities. Educational Technology & Society, 15(4), 296–304
Google Scholar
Cakir, M., Xhafa, F., Zhou, N., & Stahl, G. (2005). Thread-based analysis of patterns of collaborative interaction in chat. Proceedings of the 2005 Conference on Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology, June 2014, 120–127
Centola, D. (2010). The Spread of Behavior in an Online Social Network Experiment. Science, 329(5996), 1194–1197
Google Scholar
Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., & Charrad, M. M. (2014). Package ‘nbclust.’. Journal of Statistical Software, 61(6), 1–36
Google Scholar
Chen, B., Håklev, S., & Rosé, C. P. (2021). Collaborative Learning at Scale. In International handbook of computer-supported collaborative learning. https://doi.org/10.1007/978-3-030-65291-3
Chen, B., Scardamalia, M., & Bereiter, C. (2015). Advancing knowledge-building discourse through judgments of promising ideas. International Journal of Computer-Supported Collaborative Learning, 10(4), 345–366
Google Scholar
Chen, B., & Zhang, J. (2016). Analytics for Knowledge Creation: Towards Epistemic Agency and Design-Mode Thinking. Journal of Learning Analytics, 3(2), 139–163
Google Scholar
Chen, C. M., & Chang, C. C. (2014). Mining learning social networks for cooperative learning with appropriate learning partners in a problem-based learning environment. Interactive Learning Environments, 22(1), 97–124
Google Scholar
Chen, J., Wang, M., Kirschner, P. A., & Tsai, C. C. (2018). The Role of Collaboration, Computer Use, Learning Environments, and Supporting Strategies in CSCL: A Meta-Analysis. Review of Educational Research, 88(6), 799–843
Google Scholar
Cho, H., Gay, G., Davidson, B., & Ingraffea, A. (2007). Social networks, communication styles, and learning performance in a CSCL community. Computers & Education, 49(2), 309–329
Google Scholar
Clark, D. B., & Sampson, V. D. (2017). Analyzing the quality of argumentation supported by personally-seeded discussions. In Computer Supported Collaborative Learning 2005: The Next 10 Years! (pp. 76–85). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781351226905-11/analyzing-quality-argumentation-supported-personally-seeded-discussions-douglas-clark-victor-sampson
Cowan, R., & Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control, 28(8), 1557–1575
Google Scholar
Csardi, G., & Nepusz, T. (2006). The Igraph software package for complex network research.InterJournal, Complex Sy,1695
Davidson, N., & Major, C. H. (2014). Boundary Crossings: Cooperative Learning, Collaborative Learning, and Problem-Based Learning. Journal on Excellence in College Teaching, 25(3&4), 7–55
Google Scholar
de-Marcos, L., García-López, E., García-Cabot, A., Medina-Merodio, J. A., Domínguez, A., Martínez-Herráiz, J. J., & Diez-Folledo, T. (2016). Social network analysis of a gamified e-learning course: Small-world phenomenon and network metrics as predictors of academic performance. Computers in Human Behavior, 60(PG-312-321), 312–321
Google Scholar
Dowell, N. M. M., Nixon, T. M., & Graesser, A. C. (2019). Group communication analysis: A computational linguistics approach for detecting sociocognitive roles in multiparty interactions. Behavior Research Methods, 51(3), 1007–1041
Google Scholar
Faghani, M. R., & Nguyen, U. T. (2013). A Study of XSS Worm Propagation and Detection Mechanisms in Online Social Networks. IEEE Transactions on Information Forensics and Security, 8(11), 1815–1826
Google Scholar
Fields, D. A., & Kafai, Y. B. (2009). A connective ethnography of peer knowledge sharing and diffusion in a tween virtual world. International Journal of Computer-Supported Collaborative Learning, 4(1), 47–68
Google Scholar
Guilbeault, D., Becker, J., & Centola, D. (2018). Complex Contagions: A Decade in Review (pp. 3–25). https://doi.org/10.1007/978-3-319-77332-2_1
Gurevitch, J., Koricheva, J., Nakagawa, S., & Stewart, G. (2018). Meta-analysis and the science of research synthesis. Nature, 555(7695), 175–182
Google Scholar
Havlicek, L. L., & Peterson, N. L. (1976). Robustness of the Pearson Correlation against Violations of Assumptions. Perceptual and Motor Skills, 43(3_suppl), 1319–1334
Google Scholar
Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the study of information exchange. Library & Information Science Research, 18(4), 323–342
Google Scholar
Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Elsevier
Hernández-García, Ã., González-González, I., Jiménez-Zarco, A. I., & Chaparro-Peláez, J. (2015). Applying social learning analytics to message boards in online distance learning: A case study. Computers in Human Behavior, 47(PG-68-80), 68–80
Google Scholar
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558
Google Scholar
Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6(2), 65–70
Google Scholar
IntHout, J., Ioannidis, J. P. A., Rovers, M. M., & Goeman, J. J. (2016). Plea for routinely presenting prediction intervals in meta-analysis.BMJ Open, 6(7). https://doi.org/10.1136/bmjopen-2015-010247
Jalili, M., & Perc, M. (2017). Information cascades in complex networks. Journal of Complex Networks, 5(5), 665–693
Google Scholar
Janssen, J., & Bodemer, D. (2013). Coordinated Computer-Supported Collaborative Learning: Awareness and Awareness Tools. Educational Psychologist, 48(1), 40–55
Google Scholar
Jeong, A., Clark, D. B., Sampson, V. D., & Menekse, M. (2011). Sequential Analysis of Scientific Argumentation in Asynchronous Online Discussion Environments. Analyzing Interactions in CSCL (pp. 207–233). Springer US
Jeong, H., & Hmelo-Silver, C. E. (2016). Seven Affordances of Computer-Supported Collaborative Learning: How to Support Collaborative Learning? How Can Technologies Help? Educational Psychologist, 51(2), 247–265
Google Scholar
Jiang, S., Fitzhugh, S. M., & Warschauer, M. (2014). Social positioning and performance in MOOCs. CEUR Workshop Proceedings, 1183, 55–58
Joksimović, S., Manataki, A., Gašević, D., Dawson, S., Kovanović, V., & de Kereki, I. F. (2016). Translating network position into performance. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16, 314–323. https://doi.org/10.1145/2883851.2883928
Kim, M. K., & Ketenci, T. (2019). Learner participation profiles in an asynchronous online collaboration context. The Internet and Higher Education, 41, 62–76
Google Scholar
Kim, M. K., Wang, Y., & Ketenci, T. (2020). Who are online learning leaders? Piloting a leader identification method (LIM). Computers in Human Behavior, 105, 106205
Google Scholar
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893
Google Scholar
Kwak, S. G., & Kim, J. H. (2017). Central limit theorem: the cornerstone of modern statistics. Korean Journal of Anesthesiology, 70(2), 144
Google Scholar
Lee, A. V. Y., & Tan, S. C. (2017a). Promising Ideas for Collective Advancement of Communal Knowledge Using Temporal Analytics and Cluster Analysis. Journal of Learning Analytics, 4(3), 76–101
Google Scholar
Lee, A. V. Y., & Tan, S. C. (2017b). Temporal analytics with discourse analysis: Tracing ideas and impact on communal discourse. ACM International Conference Proceeding Series, 120–127. https://doi.org/10.1145/3027385.3027386
Lee, A. V. Y., Tan, S. C., & Chee, J. K. K. (2016). Idea identification and analysis (I2A): A search for sustainable promising ideas within knowledge-building discourse. Proceedings of International Conference of the Learning Sciences (ICLS), 1, 90–97
Lehmann, S., & Ahn, Y. Y. (2018). Complex Spreading Phenomena in Social Systems Influence and Contagion in Real-World Social Networks
Li, H. (2018). Deep learning for natural language processing: advantages and challenges. National Science Review, 5(1), 24–26
Google Scholar
Likas, A., Vlassis, N., & Verbeek, J., J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451–461
Google Scholar
Liu, S., Chai, H., Liu, Z., Pinkwart, N., Han, X., & Hu, T. (2019). Effects of Proactive Personality and Social Centrality on Learning Performance in SPOCs. Proceedings of the 11th International Conference on Computer Supported Education, 2(PG-481-487), 481–487. https://doi.org/10.5220/0007756604810487
Liu, Y., Tang, M., Zhou, T., & Do, Y. (2016). Identify influential spreaders in complex networks, the role of neighborhood. Physica A: Statistical Mechanics and Its Applications, 452, 289–298
Google Scholar
Liu, Z., Kang, L., Domanska, M., Liu, S., Sun, J., & Fang, C. (2018a). Social network characteristics of learners in a course forum and their relationship to learning outcomes. Proceedings of the 10th International Conference on Computer Supported Education, 1(PG-15-21), 15–21. https://doi.org/10.5220/0006647600150021
Liu, Z., Kang, L., Su, Z., Liu, S., & Sun, J. (2018b). Investigate the relationship between learners’ social characteristics and academic achievements. Journal of Physics: Conference Series, 1113(1), 012021. https://doi.org/10.1088/1742-6596/1113/1/012021
López-Pernas, S., Saqr, M., & Viberg, O. (2021). Putting It All Together: Combining Learning Analytics Methods and Data Sources to Understand Students’ Approaches to Learning Programming.Sustainability, 13(9). https://doi.org/10.3390/su13094825
Lund, K., Molinari, G., Séjourné, A., & Baker, M. (2007). How do argumentation diagrams compare when student pairs use them as a means for debate or as a tool for representing debate? International Journal of Computer-Supported Collaborative Learning, 2(2–3), 273–295
Google Scholar
Marcos-García, J. A., Martínez-Monés, A., & Dimitriadis, Y. (2015). DESPRO: A method based on roles to provide collaboration analysis support adapted to the participants in CSCL situations. Computers & Education, 82, 335–353
Google Scholar
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282
Google Scholar
Miller, J. K., & Volz, M. (2013). Composing Arguments: An Argumentation and Debate Textbook for the Digital Age. CreateSpace
Mirza, N. M., & Perret-Clermont, A. N. (2009). Argumentation and Education. In Muller, N., Mirza, & Perret-Clermont, A. N. (Eds.), Argumentation and Education: Theoretical Foundations and Practices. Springer US
Mochalova, A., & Nanopoulos, A. (2013). On the role of centrality in information diffusion in social networks. ECIS 2013 - Proceedings of the 21st European Conference on Information Systems
Muller Mirza, N., Tartas, V., Perret-Clermont, A. N., & De Pietro, J. F. (2007). Using graphical tools in a phased activity for enhancing dialogical skills: An example with Digalo. International Journal of Computer-Supported Collaborative Learning, 2(2–3), 247–272
Google Scholar
Nefzger, M. D., & Drasgow, J. (1957). The needless assumption of normality in Pearson’s r. American Psychologist, 12(10), 623
Google Scholar
Noroozi, O., Weinberger, A., Biemans, H. J. A. A., Mulder, M., & Chizari, M. (2012). Argumentation-Based Computer Supported Collaborative Learning (ABCSCL): A synthesis of 15 years of research. Educational Research Review, 7(2), 79–106
Google Scholar
Nussbaum, E. M., Winsor, D. L., Aqui, Y. M., & Poliquin, A. M. (2007). Putting the pieces together: Online argumentation vee diagrams enhance thinking during discussions. International Journal of Computer-Supported Collaborative Learning, 2(4), 479–500
Google Scholar
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251
Google Scholar
Ostertagova, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials, 611, 115–120
Google Scholar
Ouyang, F., & Chang, Y. H. (2019). The relationships between social participatory roles and cognitive engagement levels in online discussions. British Journal of Educational Technology, 50(3), 1396–1414
Google Scholar
Pei, S., Morone, F., & Makse, H. A. (2018). Theories for Influencer Identification in Complex Networks. In Complex spreading phenomena in social systems (pp. 125–148). Springer. https://doi.org/10.1007/978-3-319-77332-2_8
Peterson, N. L. (1977). Effect of the violation of assumptions upon significance levels of the Pearson r. Psychological Bulletin, 84(2), 373–377
Google Scholar
Pinkwart, N., Aleven, V., Ashley, K., & Lynch, C. (2006). Toward Legal Argument Instruction with Graph Grammars and Collaborative Filtering Techniques. Intelligent Tutoring Systems (pp. 227–236). Berlin Heidelberg: Springer
Google Scholar
Poquet, O., Saqr, M., & Chen, B. (2021). Recommendations for Network Research in Learning Analytics: To Open a Conversation. In O. Poquet, B. Chen, M. Saqr, & T. Hecking (Eds.), Proceedings of the NetSciLA2021 Workshop “Using Network Science in Learning Analytics: Building Bridges towards a Common Agenda” (NetSciLA2021) (Issue 2868, pp. 34–41). http://ceur-ws.org/Vol-2868/
Poquet, O., Tupikina, L., & Santolini, M. (2020). Are forum networks social networks? Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, 366–375. https://doi.org/10.1145/3375462.3375531
Putnik, G., Costa, E., Alves, C., Castro, H., Varela, L., & Shah, V. (2016). Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education. International Journal of Technology and Design Education, 26(3), 413–437
Google Scholar
Reed, C., & Rowe, G. (2004). Araucaris: Software for Argument Analysis, Diagramming and Representation. International Journal on Artificial Intelligence Tools, 13(04), 961–979
Google Scholar
Reychav, I., Raban, D. R., & McHaney, R. (2018). Centrality Measures and Academic Achievement in Computerized Classroom Social Networks. Journal of Educational Computing Research, 56(4), 589–618
Google Scholar
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(3), e1355
Google Scholar
Saqr, M., & Alamro, A. (2019). The role of social network analysis as a learning analytics tool in online problem based learning. BMC Medical Education, 19(1), 160
Google Scholar
Saqr, M., Fors, U., & Nouri, J. (2018a). Using social network analysis to understand online Problem-Based Learning and predict performance.PLOS ONE, 13(9). https://doi.org/10.1371/journal.pone.0203590
Saqr, M., Fors, U., & Tedre, M. (2018b). How the study of online collaborative learning can guide teachers and predict students’ performance in a medical course. BMC Medical Education, 18(1), 24
Google Scholar
Saqr, M., Fors, U., Tedre, M., & Nouri, J. (2018c). How social network analysis can be used to monitor online collaborative learning and guide an informed intervention.PLOS ONE, 13(3). https://doi.org/10.1371/journal.pone.0194777
Saqr, M., & López-Pernas, S. (2021). The curious case of centrality measures: a large-scale empirical investigation. Journal of Learning Analytics, 8(3), in-press
Saqr, M., & Montero, C. S. (2020). Learning and Social Networks -Similarities, Differences and Impact. IEEE 20th International Conference on Advanced Learning Technologies (ICALT)
Saqr, M., Nouri, J., & Jormanainen, I. (2019). A Learning Analytics Study of the Effect of Group Size on Social Dynamics and Performance in Online Collaborative Learning. In Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A., & Schneider, J. (Eds.), Lecture Notes in Computer Science (11722 vol., pp. 466–479). Cham: Springer
Google Scholar
Saqr, M., & Viberg, O. (2020). Using Diffusion Network Analytics to Examine and Support Knowledge Construction in CSCL Settings. In C. Alario-Hoyos, M. J. Rodríguez-Triana, l M. Scheffe, I. Arnedillo-Sánchez, & D. S.M. (Eds.), Proceedings of EC-TEL 2020: Addressing Global Challenges and Quality Education (Vol. 12315, Issue 1, pp. 158–172). Springer International Publishing. https://doi.org/10.1007/978-3-030-57717-9_12
Saqr, M., Viberg, O., & Vartiainen, H. (2020). Capturing the participation and social dimensions of computer-supported collaborative learning through social network analysis: which method and measures matter? International Journal of Computer-Supported Collaborative Learning, 15(2), 227–248
Google Scholar
Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. M. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43–102
Google Scholar
Schwarz, B. B., de Groot, R., Mavrikis, M., & Dragon, T. (2015). Learning to learn together with CSCL tools. International Journal of Computer-Supported Collaborative Learning, 10(3), 239–271
Google Scholar
Schwarz, B. B., & Glassner, A. (2007). The role of floor control and of ontology in argumentative activities with discussion-based tools. In International Journal of Computer-Supported Collaborative Learning (Vol, 2(4), 449–478
Google Scholar
Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). Meta-Analysis with R.Springer International Publishing. https://doi.org/10.1007/978-3-319-21416-0
Article
Google Scholar
Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., & Guo, R. (2015). The Independent Cascade and Linear Threshold Models. In SpringerBriefs in Computer Science (Issue 9783319231044, pp. 35–48). https://doi.org/10.1007/978-3-319-23105-1_4
Siemens, G. (2004). Connectivism: A Learning Theory for the Digital Age. International Journal of Instructional Technology and Distance Learning, 2
Singh, S. S. (2018). A Survey on Information Diffusion Models in Social Networks. In International Conference on Advanced Informatics for Computing Research (Vol. 956). Springer Singapore. https://doi.org/10.1007/978-981-13-3143-5
Soller, A., Monés, A. M., Jermann, P., & Muehlenbrock, M. (2005). From Mirroring to Guiding: A Review of State of the Art Technology for Supporting Collaborative Learning. International Journal of Artificial Intelligence in Education, 15(4), 261–290
Google Scholar
Steinley, D. (2006). K-means clustering: a half‐century synthesis. British Journal of Mathematical and Statistical Psychology, 59(1), 1–34
Google Scholar
Strijbos, J. W., & Weinberger, A. (2010). Emerging and scripted roles in computer-supported collaborative learning. Computers in Human Behavior, 26(4), 491–494
Google Scholar
Stuetzer, C. M., Koehler, T., Carley, K. M., & Thiem, G. (2013). “Brokering” Behavior in Collaborative Learning Systems. Procedia - Social and Behavioral Sciences, 100, 94–107
Google Scholar
Sumith, N., Annappa, B., & Bhattacharya, S. (2018). Influence maximization in large social networks: Heuristics, models and parameters. Future Generation Computer Systems, 89, 777–790
Google Scholar
Suthers, D. D. (2015). From contingencies to network-level phenomena. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 16-20-Marc, 368–377. https://doi.org/10.1145/2723576.2723626
Suthers, D. D., & Desiato, C. (2012). Exposing Chat Features through Analysis of Uptake between Contributions. Proceedings of the 45th Hawaii International Conference on System Sciences, 3368–3377. https://doi.org/10.1109/HICSS.2012.274
Suthers, D. D., Dwyer, N., Medina, R., & Vatrapu, R. (2010). A framework for conceptualizing, representing, and analyzing distributed interaction. International Journal of Computer-Supported Collaborative Learning, 5, 5–42
Google Scholar
Suthers, D. D., & Hundhausen, C. D. (2003). An Experimental Study of the Effects of Representational Guidance on Collaborative Learning Processes. Journal of the Learning Sciences, 12(2), 183–218
Google Scholar
Temdee, P., Thipakorn, B., Sirinaovakul, B., & Schelhowe, H. (2006). Of Collaborative Learning Team: An Approach for Emergent Leadership Roles Identification by Using Social Network Analysis. In Pan, Z., Aylett, R., Diener, H., Jin, X., Göbel, S., & Li, L. (Eds.), Lecture Notes in Computer Science (3942 vol., pp. 745–754). Berlin Heidelberg: Springer
Google Scholar
Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25
Google Scholar
Tsai, C. Y., Jack, B. M., Huang, T. C., & Yang, J. T. (2012). Using the Cognitive Apprenticeship Web-based Argumentation System to Improve Argumentation Instruction. Journal of Science Education and Technology, 21(4), 476–486
Google Scholar
van Gelder, T. (2003). Enhancing Deliberation Through Computer Supported Argument Visualization. In Visualizing Argumentation (pp. 97–115). https://doi.org/10.1007/978-1-4471-0037-9_5
Visschers-Pleijers, A. J. S. F., Dolmans, D. H. J. M., De Leng, B. A., Wolfhagen, I. H., A., P., & Van Der Vleuten, C. P. M. (2006). Analysis of verbal interactions in tutorial groups: A process study. Medical Education, 40(2), 129–137
Google Scholar
Wang, J., Hou, X., Li, K., & Ding, Y. (2017). A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks. Physica A: Statistical Mechanics and Its Applications, 475, 88–105
Google Scholar
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. In Social network analysis: Methods and applications. (pp. xxxi, 825–xxxi, 825). Cambridge University Press. https://doi.org/10.1017/CBO9780511815478
Weinberger, A., Fischer, F., & Stegmann, K. (2017). Computer-supported collaborative learning in higher education: Scripts for argumentative knowledge construction in distributed groups. Computer supported collaborative learning 2005: The next 10 years! (pp. 717–726). Routledge
Wise, A. F., & Cui, Y. (2018). Unpacking the relationship between discussion forum participation and learning in MOOCs. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, PG-330-339, 330–339. https://doi.org/10.1145/3170358.3170403
Wise, A. F., Knight, S., & Shum, B. (2021). S. Collaborative Learning Analytics. International Handbook of Computer-Supported Collaborative Learning, 1–19
Wise, A. F., & Schwarz, B. B. (2017). Visions of CSCL: eight provocations for the future of the field. International Journal of Computer-Supported Collaborative Learning, 12(4), 423–467
Google Scholar
Yew, E. H. J., & Schmidt, H. G. (2009). Evidence for constructive, self-regulatory, and collaborative processes in problem-based learning. Advances in Health Sciences Education, 14(2), 251–273
Google Scholar
Zhang, Z. K., Liu, C., Zhan, X. X., Lu, X., Zhang, C. X., & Zhang, Y. C. (2016). Dynamics of information diffusion and its applications on complex networks. Physics Reports, 651, 1–34
Google Scholar