Skip to main content
Log in

Well-Posedness of Stochastic Continuity Equations on Riemannian Manifolds

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors analyze continuity equations with Stratonovich stochasticity,

$$\partial \rho + {\rm{di}}{{\rm{v}}_h}\left[ {\rho \circ \left( {u(t,x) + \sum\limits_{i = 1}^N {{a_i}(x){{\dot W}_i}(t)} } \right)} \right] = 0$$

defined on a smooth closed Riemannian manifold M with metric h. The velocity field u is perturbed by Gaussian noise terms Ẇ1(t), …, ẆN(t) driven by smooth spatially dependent vector fields a1(x), …, aN(x) on M. The velocity u belongs to L 1t W 1,2x with divhu bounded in L pt,x for p > d + 2, where d is the dimension of M (they do not assume divhuL t,x ). For carefully chosen noise vector fields ai (and the number N of them), they show that the initial-value problem is well-posed in the class of weak L2 solutions, although the problem can be ill-posed in the deterministic case because of concentration effects. The proof of this “regularization by noise” result is based on a L2 estimate, which is obtained by a duality method, and a weak compactness argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ambrosio, L., Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158(2), 2004, 227–260.

    Article  MathSciNet  ADS  Google Scholar 

  2. Amorim, P., Ben-Artzi, M. and LeFloch, P. G., Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method, Methods Appl. Anal., 12(3), 2005, 291–323.

    Article  MathSciNet  Google Scholar 

  3. Attanasio, S. and Flandoli, F., Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise, Comm. Partial Differential Equations, 36(8), 2011, 1455–1474.

    Article  MathSciNet  Google Scholar 

  4. Aubin, T., Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

    Book  Google Scholar 

  5. Bakry, D., étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI, Lecture Notes in Math., 1247, Springer-Verlag, Berlin, 1987, 137–172.

    Google Scholar 

  6. Beck, L., Flandoli, F., Gubinelli, M. and Maurelli, M., Stochastic ODEs and stochastic linear PDEs with critical drift: Regularity, duality and uniqueness, Electron. J. Probab., 24, Paper No. 136, 2019, 72 pp.

  7. Ben-Artzi, M. and LeFloch, P. G., Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6), 2007, 989–1008.

    Article  MathSciNet  ADS  Google Scholar 

  8. Besov, O. V., Il’in, V. P. and Nikol’skij, S. M., Integral Representations of Functions and Imbedding Theorems, 1, Wiley, New York, 1978.

    Google Scholar 

  9. Chow, P.-L., Stochastic Partial Differential Equations, Advances in Applied Mathematics, 2nd. ed., CRC Press, Boca Raton, FL, 2015.

    Google Scholar 

  10. Chow, B. and Knopf, D., The Ricci Flow: An Introduction, American Mathematical Society, Providence, 2004.

    Book  Google Scholar 

  11. Davies, E. B., Pointwise bounds on the space and time derivatives of heat kernels, J. Operator Theory, 21(2), 1989, 367–378.

    MathSciNet  Google Scholar 

  12. de Rham, G., Differentiable Manifolds, Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  13. DiPerna, R. J. and Lions, P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98(3), 1989, 511–547.

    Article  MathSciNet  ADS  Google Scholar 

  14. Dumas, H. S., Golse, F. and Lochak, P., Multiphase averaging for generalized flows on manifolds, Ergodic Theory Dynam. Systems, 14(1), 1994, 53–67.

    Article  MathSciNet  Google Scholar 

  15. Elliott, C. M., Hairer, M. and Scott, M. R., Stochastic partial differential equations on evolving surfaces and evolving Riemannian manifolds, 2012, arXiv:1208.5958.

  16. Elworthy, D., Geometric aspects of diffusions on manifolds, École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Math., 1362, Springer-Verlag, Berlin, 1988, 277–425.

    Google Scholar 

  17. Fang, S., Li, H. and Luo, D., Heat semi-group and generalized flows on complete Riemannian manifolds, Bull. Sci. Math., 135(6–7), 2011, 565–600.

    Article  MathSciNet  Google Scholar 

  18. Flandoli, F., Random perturbation of PDEs and fluid dynamic models, Lecture Notes in Mathematics, 2015, Springer-Verlag, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010.

  19. Flandoli, F., Gubinelli, M. and Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180(1), 2010, 1–53.

    Article  MathSciNet  ADS  Google Scholar 

  20. Friedman, A., Stochastic Differential Equations and Applications, Dover, Publicntions, Inc., Mineola, NY, 2006.

    Google Scholar 

  21. Galimberti, L. and Karlsen, K. H., Well-posedness theory for stochastically forced conservation laws on Riemannian manifolds, J. Hyperbolic Differ. Equ., 16(3), 2019, 519–593.

    Article  MathSciNet  Google Scholar 

  22. Galimberti, L. and Karlsen, K. H., Renormalization of stochastic continuity equations on Riemannian manifolds, Stochastic Processes and their Applications, 142, 2021, 195–244.

    Article  MathSciNet  Google Scholar 

  23. Gess, B. and Maurelli, M., Well-posedness by noise for scalar conservation laws, Comm. Partial Differential Equations, 43(12), 2018, 1702–1736.

    Article  MathSciNet  Google Scholar 

  24. Gess, B. and Smith, S., Stochastic continuity equations with conservative noise, J. Math. Pures Appl. (9), 128, 2019, 225–263.

    Article  MathSciNet  Google Scholar 

  25. Greene, R. E. and Wu, H., C approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup. (4), 12(1), 1979, 47–84.

    Article  MathSciNet  Google Scholar 

  26. Grigor’yan, A., Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, Rllnter National Press, Boston, MA, 2009.

    Google Scholar 

  27. Gyöngy, I., Stochastic partial differential equations on manifolds, I, Potential Anal., 2(2), 1993, 101–113.

    Article  MathSciNet  Google Scholar 

  28. Gyöngy, I., Stochastic partial differential equations on manifolds, II, Nonlinear filtering, Potential Anal., 6(1), 1997, 39–56.

    Article  MathSciNet  Google Scholar 

  29. Holden, H., Karlsen, K. H. and Pang, P. H., The Hunter–Saxton equation with noise, J. Differential Equations, 270, 2021, 725–786.

    Article  MathSciNet  ADS  Google Scholar 

  30. Kunita, H., First order stochastic partial differential equations, Stochastic Analysis, North-Holland Math. Library, 32, 1982, 249–269.

    Article  MathSciNet  Google Scholar 

  31. Kunita, H., Stochastic flows and stochastic differential equations, Cambridge studies in advanced mathematics, 24, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  32. Lee, J. M., Riemannian Manifolds, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997.

    Google Scholar 

  33. Lions, P.-L., Mathematical Topics in Fluid Mechanics, 1 Incompressible Models, Oxford University Press, New York, 1996.

    Google Scholar 

  34. Lions, P.-L., Mathematical Topics in Fluid Mechanics, 2 Compressible Models, Oxford University Press, New York, 1998.

    Google Scholar 

  35. Neves, W. and Olivera, C., Wellposedness for stochastic continuity equations with Ladyzhenskaya-Prodi-Serrin condition, NoDEA Nonlinear Differential Equations Appl., 22(5), 2019, 1247–1258.

    Article  MathSciNet  Google Scholar 

  36. Neves, W. and Olivera, C., Stochastic continuity equations–a general uniqueness result, Bulletin of the Brazilian Mathematical Society, New Series, 47, 2016, 631–639.

    Article  MathSciNet  Google Scholar 

  37. Pardoux, E., Equations aux dérivées partielles stochastiques non linéaires monotones, Etude de solutions fortes de type Ito, PhD Thesis, Université Paris Sud, 1975.

  38. Protter, P., Stochastic Integration and Differential Equations, Applications of Mathematics (New York), 21, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  39. Punshon-Smith, S., Renormalized solutions to stochastic continuity equations with rough coefficients, 2017, arXiv 1710.06041.

  40. Punshon-Smith, S. and Smith, S., On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions, Arch. Ration. Mech. Anal., 229(2), 2018, 627–708.

    Article  MathSciNet  Google Scholar 

  41. Rabier, P. J., Vector-valued Morrey’s embedding theorem and Hölder continuity in parabolic problems, Electron. J. Differential Equations, 10, 2011, pages No. 10.

  42. Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd ed. 293, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  43. Rossmanith, J. A., Bale, D. S. and LeVeque, R. J., A wave propagation algorithm for hyperbolic systems on curved manifolds, J. Comput. Phys., 199(2), 2004, 631–662.

    Article  MathSciNet  ADS  Google Scholar 

  44. Seeley, R. T., Extension of C functions defined in a half space, Proc. Amer. Math. Soc., 15, 1964, 625–626.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Galimberti or Kenneth H. Karlsen.

Ethics declarations

Conflicts of interest The authors declare no conflicts of interest.

Additional information

This work was supported by the Research Council of Norway through the projects Stochastic Conservation Laws (No. 250674) and (in part) Waves and Nonlinear Phenomena (No. 250070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galimberti, L., Karlsen, K.H. Well-Posedness of Stochastic Continuity Equations on Riemannian Manifolds. Chin. Ann. Math. Ser. B 45, 81–122 (2024). https://doi.org/10.1007/s11401-024-0005-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-024-0005-9

Keywords

2020 MR Subject Classification

Navigation