Skip to main content
Log in

Hayward Quasilocal Energy of Tori

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, the authors show that one cannot dream of the positivity of the Hayward energy in the general situation. They consider a scenario of a spherically symmetric constant density star matched to the Schwarzschild solution, representing momentarily static initial data. It is proved that any topological tori within the star, distorted or not, have strictly positive Hayward energy. Surprisingly we find analytic examples of ‘thin’ tori with negative Hayward energy in the outer neighborhood of the Schwarzschild horizon. These tori are swept out by rotating the standard round circles in the static coordinates but they are distorted in the isotropic coordinates. Numerical results also indicate that there exist horizontally dragged tori with strictly negative Hayward energy in the region between the boundary of the star and the Schwarzschild horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnowitt, R., Deser, S. and Misner, S., Coordinate invariance and energy expressions in general relativity, Phys. Rev., 122(3) 1961, 997–1006.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bengtsson, I., The Hawking energy on photo surfaces, Gen. Rel. Grav., 52(5) 2020, 52.

    Article  MATH  MathSciNet  Google Scholar 

  3. Brown, J. D. and York, J. W., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D, 47(4) 1993, 1407–1419.

    Article  MathSciNet  Google Scholar 

  4. Christodoulou, D. and Yau, S. -T., Some remarks on the quasi-local mass. Isenberg, J. (eds.) Mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. 71, Amer. Math. Soc., Providence, RI, 1988.

    Google Scholar 

  5. Geroch, R., Energy extraction, Ann. N.Y. Acad. Sci., 224(1) 1973, 108–117.

    Article  MATH  Google Scholar 

  6. Hawking, S. W., Gravitational radiation in an expanding universe, J. Math. Phys., 9(4) 1968, 598–604.

    Article  MathSciNet  Google Scholar 

  7. Hayward, G., Gravitational action for spacetimes with nonsmooth boundaries, Phys. Rev. D, 47(8) 1993, 3275–3280.

    Article  MathSciNet  Google Scholar 

  8. Hayward, S., Quasilocal gravitational energy, Phys. Rev. D, 49(2) 1994, 831–839.

    Article  MathSciNet  Google Scholar 

  9. He, X. and Xie, N., Quasi-local energy and Oppenheimer-Snyder collapse, Class. Quantum Grav., 37(18) 2020, 185016.

    Article  MATH  MathSciNet  Google Scholar 

  10. Huisken, G. and Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., 59(3) 2001, 353–437.

    Article  MATH  MathSciNet  Google Scholar 

  11. Husa, S., Initial data for general relativity containing a marginally outer trapped torus, Phys. Rev. D, 54(12) 1996, 7311–7321.

    Article  MathSciNet  Google Scholar 

  12. Karkowski, J., Mach, P., Malec, E., et al., Toroidal trapped surfaces and isoperimetric inequalities, Phys. Rev. D, 95(6) 2017, 064037.

    Article  MathSciNet  Google Scholar 

  13. Kijowski J., A simple derivation of the canonical structure and the quasi-local Hamiltonians in general relativity, Gen. Rel. Grav., 29(3) 1997, 307–343.

    Article  MATH  MathSciNet  Google Scholar 

  14. Mach, P. and Xie, N., Toroidal marginally outer trapped surfaces in closed Friedmann-Lemaître-Robertson-Walker spacetimes: stability and isoperimetric inequalities, Phys. Rev. D, 96(8) 2017, 084050.

    Article  MathSciNet  Google Scholar 

  15. O Murchadha, N., How large can a star be?, Phys. Rev. Lett., 57(19) 1986, 2466–2469.

    Article  MathSciNet  Google Scholar 

  16. Penrose, R., Some unsolved problems in classical general relativity. In: Yau, S. -T. (eds.) Seminar on Differential Geometry, Ann. Math. Stud., 102, Princeton Univ. Press, NJ, 1982.

    Google Scholar 

  17. Schoen, R. and Yau, S. -T., On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65(1) 1979, 45–76.

    Article  MATH  MathSciNet  Google Scholar 

  18. Schoen, R. and Yau, S. -T., Proof of the positive mass theorem. II, Commun. Math. Phys., 79(2) 1981, 231–260.

    Article  MATH  MathSciNet  Google Scholar 

  19. Shi, Y. and Tam, L. -F., Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differ. Geom., 62(1) 2002, 79–125.

    Article  MATH  MathSciNet  Google Scholar 

  20. Szabados, L., Quasi-local energy-momentum and angular momentum in general relativity, Liv. Rev. Relativ., 12, 2009, 4.

    Article  MATH  Google Scholar 

  21. Wang, M. -T. and Yau, S. -T., Quasilocal mass in general relativity, Phys. Rev. Lett., 102(2) 2009, 021101.

    Article  MathSciNet  Google Scholar 

  22. Witten, E., A new proof of the positive energy theorem, Commun. Math. Phys., 80(3) 1981, 381–402.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaokai He or Naqing Xie.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11671089), the Natural Science Foundation of Hunan Province (No. 2018JJ2073) and the Key Project of Education Department of Hunan Province (No. 21A0576).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Xie, N. Hayward Quasilocal Energy of Tori. Chin. Ann. Math. Ser. B 43, 773–784 (2022). https://doi.org/10.1007/s11401-022-0357-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-022-0357-y

Keywords

2000 MR Subject Classification

Navigation