Skip to main content
Log in

Invariant Tori of Full Dimension for Second KdV Equations with the External Parameters

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the second KdV equation with the external parameters

$$\begin{aligned} u_{t} =\partial _x^5 u +(M_{\sigma }u+u^3)_{x}, \end{aligned}$$

under zero mean-value periodic boundary conditions

$$\begin{aligned} u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$

where \(M_\sigma \) is a real Fourier multiplier. It is proved that the equations admit a Whitney smooth family of small amplitude, real analytic almost periodic solutions with all frequencies. The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property of the perturbation and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property of the perturbation, our normal form part is independent of angle variables in spite of the unbounded perturbation. This is the first attempt to prove the almost periodic solutions for the unbounded perturbation case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The norm \(\Vert \cdot \Vert _{D_\rho ( r,s), \mathcal O}\) for scalar functions is defined in (2.3). The vector function \(G: D_\rho ( r,s)\times \mathcal{O}\rightarrow {\mathbb C}^m\), (\(m<\infty \)) is similarly defined as \(\Vert G\Vert _{D_\rho ( r,s), \mathcal O}=\sum \nolimits _{i=1}^m\Vert G_i\Vert _{D_\rho ( r,s), \mathcal O}\).

References

  1. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Annalen 359, 471–536 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12, 823–850 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  MATH  Google Scholar 

  4. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. International Mathematics Research Notices, pp. 475–497 (1994)

  5. Bourgain, J.: Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

    Book  MATH  Google Scholar 

  7. Bourgain, J.: Nonlinear Schrödinger Equations. Park City Series, vol. 5. American Mathematical Society, Providence (1999)

  8. Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6, 201–230 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgain, J.: On invariant tori of full dimension for 1D periodic NLS. J. Funct. Anal. 229, 62–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 498–525 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure. Appl. Math. 46, 1409–1498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa 15, 115–147 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geng, J., Wu, J.: Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations. J. Math. Phys. 53(2012), 102702, 27 pp

  15. Geng, J., Xu, X.: Almost periodic solutions of one dimensional Schrödinger equation with the external parameters. J. Dynam. Differ. Equ. 25, 435–450 (2013)

    Article  MATH  Google Scholar 

  16. Geng, J., Yi, Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Differ. Equ. 233, 512–542 (2007)

    Article  MATH  Google Scholar 

  17. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Geng, J., You, J.: A KAM theorem for one-dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209, 1–56 (2005)

    Article  MATH  Google Scholar 

  19. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19, 2405–2423 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Geng, J., You, J.: A KAM theorem for higher dimensional nonlinear Schrödinger equations. J. Dynam. Differ. Equ. 25, 451–476 (2013)

    Article  MATH  Google Scholar 

  21. Geng, J.: Invariant tori of full dimension for a nonlinear Schrödinger equation. J. Differ. Equ. 252, 1–34 (2012)

    Article  MATH  Google Scholar 

  22. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Huang, G., Kuksin, S.B.: KdV equation under periodic boundary conditions and its perturbations, preprint, arXiv:1309.1597

  24. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  25. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192–205 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuksin, S.B.: Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  27. Kuksin, S.B.: A KAM-theorem for equations of the Korteweg-de Vries type. Rev. Math. Phys. 10, 1–64 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kuksin, S.B.: Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  30. Liang, Z., You, J.: Quasi-periodic solutions for 1D Schrödinger equation with higher order nonlinearity. SIAM J. Math. Anal. 36, 1965–1990 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient. Commun. Pure. Appl. Math. 63, 1145–1172 (2010)

    MATH  MathSciNet  Google Scholar 

  32. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partical differential equations with unbounded perturbations. Commun. Math. Phys. 307, 629–673 (2011)

    Article  MATH  Google Scholar 

  33. Niu, H., Geng, J.: Almost periodic solutions for a class of higher dimensional beam equations. Nonlinearity 20, 2499–2517 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pöschel, J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helvetici 71, 269–296 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pöschel, J.: A KAM Theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)

    MATH  MathSciNet  Google Scholar 

  37. Pöschel, J.: On the construction of almost periodic solutions for a nonlinear Schrödinger equation. Erg. Th. Dynam. Syst. 22, 1537–1549 (2002)

    Article  MATH  Google Scholar 

  38. Wayne, C.E.: Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wu, J., Geng, J.: Almost periodic solutions for a class of semilinear quantum harmonic oscillators. Discrete Contin. Dyn. Syst. 31, 997–1015 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Xu, J., Qiu, Q., You, J.: A KAM theorem of degenerate infinite dimensional Hamiltonian systems (I). Sci. China Ser. A 39, 372–383 (1996)

    MATH  MathSciNet  Google Scholar 

  41. Xu, J., Qiu, Q., You, J.: A KAM theorem of degenerate infinite dimensional Hamiltonian systems (II). Sci. China Ser. A 39, 384–394 (1996)

    MATH  MathSciNet  Google Scholar 

  42. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230, 213–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Yingfei Yi and Jiangong You for fruitful discussions about this work. We would also like to thank the anonymous referee for good suggestions and pointing out some mistakes in the former version. This work is partially supported by NSFC Grant 11271180. This work is also partially supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Geng.

Appendix

Appendix

Lemma 6.5

If

$$\begin{aligned} \Vert X_F\Vert _{ D_\rho (r,s),\mathcal O }< \varepsilon ',\ \Vert X_G\Vert _{ D_\rho (r,s),\mathcal O }< \varepsilon '', \end{aligned}$$

then

$$\begin{aligned} \Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),\mathcal O}<c\sigma ^{-1}\eta ^{-2}\varepsilon '\varepsilon '',\ \eta \ll 1. \end{aligned}$$

In particular, if \(\eta \sim \varepsilon ^{\frac{1}{3}}\), \(\varepsilon ', \varepsilon ''\sim \varepsilon \), we have \(\Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),\mathcal O}\sim \varepsilon ^{\frac{4}{3}}\).

For the proof, see [18]. \(\square \)

Let V be an open domain in a real Banach space E with norm\(\Vert \cdot \Vert \), B a subset of another real Banach space, and \(X:V\times B\rightarrow E\) a parameter dependent vector field on V,  which is \(C^{1}\) on V and Lipschitz on B. Let \(\phi ^{t}\) be its flow. Suppose there is a subdomain \(U\subset V\) such that \(\phi ^{t} :U\times B\rightarrow V\) for \(-1\le t\le 1\).

Lemma 6.6

Under the preceding assumptions,

$$\begin{aligned} \Vert \phi ^{t}-id\Vert _{U}\le & {} \Vert X\Vert _{V}\\ \Vert \phi ^{t}-id\Vert _{U}^{\mathcal L }\le & {} \mathrm{exp}(\Vert DX_{V}\Vert )\Vert X\Vert _{V}^{\mathcal L} \end{aligned}$$

For the proof, see [35]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, J., Hong, W. Invariant Tori of Full Dimension for Second KdV Equations with the External Parameters. J Dyn Diff Equat 29, 1325–1354 (2017). https://doi.org/10.1007/s10884-015-9505-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9505-3

Keywords

Navigation