Skip to main content

Advertisement

Log in

Existence and Uniqueness of Viscosity Solutions for Nonlinear Variational Inequalities Associated with Mixed Control

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The author investigates the nonlinear parabolic variational inequality derived from the mixed stochastic control problem on finite horizon. Supposing that some sufficiently smooth conditions hold, by the dynamic programming principle, the author builds the Hamilton-Jacobi-Bellman (HJB for short) variational inequality for the value function. The author also proves that the value function is the unique viscosity solution of the HJB variational inequality and gives an application to the quasi-variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardi, M. and Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, MA, 1997.

    Book  Google Scholar 

  2. Bensoussan, A., Stochastic Control by Functional Analysis Methods, North-Holland Publishing Co., Amsterdam, New York, 1982.

    MATH  Google Scholar 

  3. Bensoussan, A. and Lions, J. L., Applications of Variational Inequalities in Stochastic Control, North-Holland Publishing Co., Amsterdam, New York, 1982.

    MATH  Google Scholar 

  4. Chang, M. H., Pang, T. and Yong, J. M., Optimal stopping problem for stochastic differntial equations with random coefficients, SIAM J. Control OPtim., 48(2), 2009, 941–971.

    Article  MathSciNet  Google Scholar 

  5. Crandall, M. G., Ishii, H. and Lions, P. L., User’s guide to the viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27(1), 1992, 1–67.

    Article  MathSciNet  Google Scholar 

  6. Crandall, M. G. and Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277(1), 1983, 1–42.

    Article  MathSciNet  Google Scholar 

  7. El Karoui, N., Les Aspects Probabilistes du Contrôle Stochastique, Lecture Notes in Mathematics, 876, Springer-Verlag, Berlin, 1981.

    MATH  Google Scholar 

  8. Fleming, W. H. and Soner, H. M., Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  9. Friedman, A., Optimal stopping problems in stochastic control, SIAM Rev., 21(1), 1979, 71–80.

    Article  MathSciNet  Google Scholar 

  10. Friedman, A., Variational Principle and Free-Boundary Problems, Wiley, New York, 1982.

    MATH  Google Scholar 

  11. Friedman, A., Optimal control for variational inequalities, SIAM J. Control Optim., 24(3), 1986, 439–451.

    Article  MathSciNet  Google Scholar 

  12. Friedman, A., Optimal control for parabolic variational inequalities, SIAM J. Control Optim., 25(2), 1987, 482–497.

    Article  MathSciNet  Google Scholar 

  13. Friedman, A., Huang, S. and Yong, J., Bang-bang optimal control for the dam problem, Appl. Math. Optim., 15(1), 1987, 65–85.

    Article  MathSciNet  Google Scholar 

  14. Friedman, A., Huang, S. and Yong, J., Optimal periodic control for the two-phase stefan problem, SIAM J. Control Optim., 26(1), 1988, 23–41.

    Article  MathSciNet  Google Scholar 

  15. Goreac, D. and Serea, O., Mayer and optimal stopping stochastic control problems with discontinuous cost, J. Math. Anal. and Appl., 380(1), 2011, 327–342.

    Article  MathSciNet  Google Scholar 

  16. Karatzas, I. and Shreve, S. E., Brownian Motion and Stochastic Calculus, 2nd ed., Springer-Verlag, Berlin, New York, 1991.

    MATH  Google Scholar 

  17. Karatzas, I. and Shreve, S. E., Methods of Mathematical Finance, Springer-Verlag, New York, 1998.

    Book  Google Scholar 

  18. Karatzas, I. and Zamfirescu, I., Martingale approach to stochastic control with discretionary stopping, Appl. Math. Optim., 53(2), 2006, 163–184.

    Article  MathSciNet  Google Scholar 

  19. Karatzas, I. and Zamfirescu, I., Martingale approach to stochastic differntial games of control and stopping, The Annals of Probability, 36(4), 2008, 1495–1527.

    Article  MathSciNet  Google Scholar 

  20. Kinderlehrer, D. and Stampacchia, G., An Introduction to Variational Inequalities and Their Application, Academic Press, New York, 1980.

    MATH  Google Scholar 

  21. Koike, S. and Morimoto, H., Varitional inequalities for leavable bouned-velocity control, Appl. Math. Optim., 48(1), 2003, 1–20.

    Article  MathSciNet  Google Scholar 

  22. Koike, S., Morimoto, H. and Sakguchi, S., A linear-quadratic control problem with discretionary stopping, Discrte Contin. Dyn. Syst. Ser. B, 8(2), 2007, 261–277.

    MathSciNet  MATH  Google Scholar 

  23. Krylov, N. V., Controlled Diffusion Processes, Springer-Verlag, New York, 1980.

    Book  Google Scholar 

  24. Morimoto, H., Variational inequalities for combined control and stopping, SIAM J. Control Optim., 42(2), 2003, 686–708.

    Article  MathSciNet  Google Scholar 

  25. Øksendal, B., Stochastic Differential Equations, 5th ed., Springer-Verlag, Berlin, 1998.

    Book  Google Scholar 

  26. Pham, H., Optimal stopping of controlled jump diffusion processes: A viscosity solution approach, J. Math. Systems, Estimates and Control, 8(1), 1998, 1–27.

    MathSciNet  Google Scholar 

  27. Shrayev, A. N., Optimal Stopping Rules, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  28. Yong, J. M. and Zhou, X. Y., Stochastic Controls: Hamiltonian Systems and HJB Equations, SpringerVerlag, New York, 1999.

    Book  Google Scholar 

Download references

Acknowledgement

The author deeply thanks Professor Shanjian Tang for his very useful help and encouragement. This work is part of the author’s Ph.D thesis at Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipei Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S. Existence and Uniqueness of Viscosity Solutions for Nonlinear Variational Inequalities Associated with Mixed Control. Chin. Ann. Math. Ser. B 41, 793–820 (2020). https://doi.org/10.1007/s11401-020-0234-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-020-0234-5

Keywords

2000 MR Subject Classification

Navigation