Skip to main content
Log in

Porous medium flow with both a fractional potential pressure and fractional time derivative

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors study a porous medium equation with a right-hand side. The operator has nonlocal diffusion effects given by an inverse fractional Laplacian operator. The derivative in time is also fractional and is of Caputo-type, which takes into account “memory”. The precise model is

$$D_t^\alpha u - div\left( {u - {{\left( { - \Delta } \right)}^{ - \sigma }}u} \right) = f,0 < \sigma < \frac{1}{2}.$$

This paper poses the problem over {t ∈ R+, x ∈ Rn} with nonnegative initial data u(0, x) ≥ 0 as well as the right-hand side f ≥ 0. The existence for weak solutions when f, u(0, x) have exponential decay at infinity is proved. The main result is Hölder continuity for such weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M., Caffarelli, L. and Vasseur, A., A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221(2), 2016, 603–630.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardis, A., Martín-Reyes, F. J., Stinga, P. R., et al., Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Diff. Equ., 260(7), 2016, 6333–6362.

    MATH  Google Scholar 

  3. Bucur, C. and Ferrari, F., An extension problem for the fractional derivative defined by Marchaud, Fract. Calc. Appl. Anal., 19(4), 2016, 867–887.

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Chan, C. H. and Vasseur, A., Regularity theory for parabolic nonlinear integral operators, J. Amer. Math. Soc., 24(3), 2011, 849–869.

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Soria, F. and Vázquez, J. L., Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc. (JEMS), 15(5), 2013, 1701–1746.

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L. and Vazquez, J. L., Nonlinear porous medium flow with fractional potential pressure, Arch. Ration. Mech. Anal., 202(2), 2011, 537–565.

    Article  MathSciNet  MATH  Google Scholar 

  7. Caputo, M., Diffusion of fluids in porous media with memory, Geothermics, 28(1), 1999, 113–130.

    Article  Google Scholar 

  8. Del-Castillo-Negrete, D., Carreras, B. A. and Lynch, V. E., Fractional diffusion in plasma turbulence, Physics of Plasmas, 11(8), 2004, 3854–3864.

  9. Del-Castillo-Negrete, D., Carreras, B. A. and Lynch, V. E., Nondiffusive transport in plasma turbulene: A fractional diffusion approach, Physical Review Letters, 94(6), 2004, 065003.

    Article  Google Scholar 

  10. Di Nezza, E., Palatucci, G. and Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136(5), 2012, 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., The analysis of fractional differential equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, Vol. 2004, Springer-Verlag, Berlin, 2010.

    MATH  Google Scholar 

  12. Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  13. Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339(1), 2000, 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  14. Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993, Theory and applications, Edited and with a foreword by S. M. Nikol’skii, Translated from the 1987 Russian original, Revised by the authors.

    MATH  Google Scholar 

  15. Triebel, H., Theory of function spaces, Modern Birkhäuser Classics, Reprint of 1983 edition, Also published in 1983 by Birkhäuser Verlag, Birkhäuser/Springer Basel AG, Basel, 2010.

    Google Scholar 

  16. Vázquez, J. L., The porous medium equation, Oxford Mathematical Monographs, Mathematical Theory, The Clarendon Press, Oxford University Press, Oxford, 2007.

    Google Scholar 

  17. Zacher, R., Global strong solvability of a quasilinear subdiffusion problem, J. Evol. Equ., 12(4), 2012, 813–831.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371(6), 2002, 461–580.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, X. H., Xiao, W. L. and Chen, J. C., Fractional porous medium and mean field equations in Besov spaces, Electron. J. Differential Equations, 2014(199), 2014, 1–14.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Allen.

Additional information

Dedicated to Haim Brezis on the occasion of his 70th birthday

This work was supported by NSG grant DMS-1303632, NSF grant DMS-1500871 and NSF grant DMS-1209420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, M., Caffarelli, L. & Vasseur, A. Porous medium flow with both a fractional potential pressure and fractional time derivative. Chin. Ann. Math. Ser. B 38, 45–82 (2017). https://doi.org/10.1007/s11401-016-1063-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-016-1063-4

Keywords

2000 MR Subject Classification

Navigation