Skip to main content
Log in

Weak continuity and compactness for nonlinear partial differential equations

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G. and Müller, S., A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 54, 2001, 761–825.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63, 197, 6–197733, 7–403.

    Article  MATH  Google Scholar 

  3. Ball, J. M., A version of the fundamental theorem for Young measures, Lecture Notes in Phys., 344, Springer-Verlag, Berlin, 1989, 207–215.

    Article  Google Scholar 

  4. Bianchini, S. and Bressan, A., Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math., 161(2), 2005, 223–342.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan, A., Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford University Press, Oxford, 2000.

    Google Scholar 

  6. Briane, M., Casado-Díaz, J. and Murat, F., The div-curl lemma “trente ans aprs”: An extension and an application to the G-convergence of unbounded monotone operators, J. Math. Pures Appl., 91(9), 2009, 476–494.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bryant, R. L., Griffiths, P. A. and Yang, D., Characteristics and existence of isometric embeddings, Duke Math. J., 50, 1983, 893–994.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G. Q., Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Math. Sci., 6B, 1986, 75–120 (in English); 8A, 1988 243–276 (in Chinese).

    Google Scholar 

  9. Chen, G. Q., Remarks on spherically symmetric solutions of the compressible Euler equations, Proc. Royal Soc. Edinburgh Ser. A, 127, 1997, 243–259.

    Article  MATH  Google Scholar 

  10. Chen, G. Q., Euler Equations and Related Hyperbolic Conservation Laws, Handbook of Differential Equations: Evolutionary Differential Equations, Vol. 2, C. M. Dafermos and E. Feireisl (eds.), Elsevier, Amsterdam, 2005, 1–104.

    Article  MATH  Google Scholar 

  11. Chen, G. Q. and Christoforou, C., Solutions for a nonlocal conservation law with fading memory, Proc. Amer. Math. Soc., 135(12), 2007, 3905–3915.

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, G. Q., Dafermos, C. M., Slemrod, M. and Wang, D., On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271, 2007, 635–647.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, G. Q., Huang, F. M. and Wang, T. Y., Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Rational Mech. Anal., 2015, to appear. arXiv: 1311.3985

    Google Scholar 

  14. Chen, G. Q. and LeFloch, P. G., Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal., 153, 2000, 221–259.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, G. Q. and LeFloch, P. G., Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal., 166, 2003, 81–98.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G. Q. and Li, T. H.,Well-posedness for two-diemnsonal steady supersonic Euler flows past a Lipschitz wedge, J. Diff. Eqs., 244, 2008, 1521–1550.

    Article  MATH  Google Scholar 

  17. Chen, G. Q., Li, B. H. and Li, T. H., Entropy solutions in L for the Euler equations in nonlinear elastodynamics and related equations, Arch. Rational Mech. Anal., 170, 2003, 331–357.

    Article  MATH  Google Scholar 

  18. Chen, G. Q. and Lu, Y. G., The study on application way of the compensated compactness theory, Chinese Sci. Bull., 33, 1988, 641–644 (in Chinese); 34, 1989, 15–19 (in English).

    Google Scholar 

  19. Chen, G. Q. and Perepelitsa, M., Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow, Comm. Pure Appl. Math., 63, 2010, 1469–1504.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, G. Q. and Perepelitsa, M., Shallow water equations: Viscous solutions and inviscid limit, Z. Angew. Math. Phys., 63, 2012, 1067–1084.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, G. Q. and Perepelitsa, M., Vanishing viscosity solutions of the compressible Euler equations with spherically symmetry and large initial data, Comm. Math. Phys., 338, 2015, 771–800.

    Article  MathSciNet  Google Scholar 

  22. Chen, G. Q., Slemrod, M. and Wang, D., Vanishing viscosity method for transonic flow, Arch. Rational Mech. Anal., 189, 2008, 159–188.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, G. Q., Slemrod, M. and Wang, D., Isometric immersions and compensated compactness, Comm. Math. Phys., 294, 2010, 411–437.

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, G. Q., Slemrod, M. and Wang, D., Weak continuity of the Gauss-Codazzi-Ricci system for isometric embedding, Proc. Amer. Math. Soc., 138, 2010, 1843–1852.

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, G. Q., Zhang, Y. Q. and Zhu, D. W., Existence and stability of supersonic Euler flows past Lipschitz wedges, Arch. Rational Mech. Anal., 181, 2006, 261–310.

    Article  MathSciNet  MATH  Google Scholar 

  26. Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1948.

    MATH  Google Scholar 

  27. Dafermos, C. M., Solutions in L for a conservation law with memory, Analyse Mathématique et Applications, Gauthier-Villars, Montrouge, 1988, 117–128.

    Google Scholar 

  28. Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2010.

    Book  MATH  Google Scholar 

  29. De Lellis, C. and Székelyhidi, Jr. L., On admissibility criteria for weak solutions of the Euler equations, Arch. Rational Mech. Anal., 195, 2010, 225–260.

    Article  MATH  Google Scholar 

  30. De Lellis, C. and Székelyhidi, Jr. L., The h-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.), 49, 2012, 347–375.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding, X., Chen, G. Q. and Luo, P., Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)–(II), Acta Math. Sci., 5B, 1985, 483–500, 501–540 (in English); 7A, 1987 46, 7–480; 8A, 1989 61–94 (in Chinese).

    MathSciNet  Google Scholar 

  32. Ding, X., Chen, G. Q. and Luo, P., Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys., 121, 1989, 63–84.

    Article  MathSciNet  MATH  Google Scholar 

  33. DiPerna, R. J., Decay of solutions of hyperbolic systems of conservation laws with a convex extension, Arch. Rational Mech. Anal., 64, 1977, 1–46.

    Article  MathSciNet  MATH  Google Scholar 

  34. DiPerna, R. J., Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91, 1983, 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  35. DiPerna, R. J., Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., 82, 1983, 27–70.

    Article  MathSciNet  MATH  Google Scholar 

  36. DiPerna, R. J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88, 1985, 223–270.

    Article  MathSciNet  MATH  Google Scholar 

  37. DiPerna, R. J., Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc., 292, 1985, 383–420.

    Article  MathSciNet  Google Scholar 

  38. Efimov, N. V., The impossibility in Euclideam 3-space of a complete regular surface with a negative upper bound of the Gaussian curvature, Dokl. Akad. Nauk SSSR (N.S.), 150, 1963, 1206–1209; Soviet Math. Dokl., 4, 1963, 843–846.

    MathSciNet  Google Scholar 

  39. Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS-RCSM, Vol. 74, A. M. S., Providence, RI, 1990.

  40. Gilbarg, D., The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math., 73, 1951, 256–274.

    Article  MathSciNet  MATH  Google Scholar 

  41. Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18, 1965, 697–715.

    Article  MathSciNet  MATH  Google Scholar 

  42. Glimm, J. and Lax, P. D., Decay of solutions of systems of hyperbolic conservation laws, Bull. Amer. Math. Soc., 73(105), 1967.

  43. Gromov, M., Partial Differential Relations, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  44. Guderley, G., Starke kugelige und zylindrische Verdichtungsstosse inder Nahe des Kugelmittelpunktes bzw, der Zylinderachse. Luftfahrtforschung, 19(9), 1942, 302–311.

    MathSciNet  Google Scholar 

  45. Guès, C. M. I. O., Métivier, G., Williams, M. and Zumbrun, K., Navier-Stokes regularization of multidimensional Euler shocks, Ann. Sci. École Norm. Sup., 39(4), 2006, 75–175.

    MATH  Google Scholar 

  46. Günther, M., Zum Einbettungssatz von J. Nash [On the embedding theorem of J. Nash], Math. Nachr., 144, 1989, 16,5–187 (in German).

    Article  MathSciNet  MATH  Google Scholar 

  47. Han, Q. and Hong, J. X., Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, A. M. S., Providence, RI, 2006.

    Book  MATH  Google Scholar 

  48. Hoff, D., Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states, Z. Angew. Math. Phys., 49, 1998, 774–785.

    Article  MathSciNet  MATH  Google Scholar 

  49. Hoff, D. and Liu, T. P., The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data, Indiana Univ. Math. J., 38, 1989, 861–915.

    Article  MathSciNet  MATH  Google Scholar 

  50. Holden, H. and Risebro, N. H., Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2011.

    Book  MATH  Google Scholar 

  51. Hopf, E., The partial differential equation u t + uu x = u xx , Comm. Pure Appl. Math., 3, 1950, 20, 1–230.

    Article  MathSciNet  MATH  Google Scholar 

  52. Huang, F. and Wang, Z., Convergence of viscosity solutions for isothermal gas dynamics, SIAM J. Math. Anal., 34, 2002, 595–610.

    Article  MathSciNet  MATH  Google Scholar 

  53. Janet, M., Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien, Ann. Soc. Pol. Math., 5, 1926, 38–43.

    Google Scholar 

  54. Kanel, I., On a model system of equations for one-dimensional gas motion, Differ. Uravn., 4, 1968, 71–734.

    MathSciNet  MATH  Google Scholar 

  55. Kruzkov, S. N., First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81(123), 1970, 228–255 (in Russian).

    MathSciNet  Google Scholar 

  56. Lax, P. D., Shock wave and entropy, Co3–634.

  57. Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS Regional Conference Series in Mathematics, 11, SIAM, Philadelphia, 1973.

  58. LeFloch, P. G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Birkhäuser-Verlag, Basel, 2002.

    Book  Google Scholar 

  59. LeFloch, P. G. and Shelukhin, V., Symmetries and local solvability of the isothermal gas dynamics equations, Arch. Rational Mech. Anal., 175, 2005, 389–430.

    Article  MathSciNet  MATH  Google Scholar 

  60. LeFloch, P. G. and Westdickenberg, M., Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl., 88, 2007, 386–429.

    Article  MathSciNet  Google Scholar 

  61. Liu, T. P., Admissible solutions of hyperbolic conservation laws, Mem. Amer. Math. Soc., 30, 1981, 240.

    Google Scholar 

  62. Liu, T. P. and Yang, T., Well-posedness theory for hyperbolic conservation laws, Comm. Pure Appl. Math., 52, 1999, 1553–1586.

    Article  MathSciNet  MATH  Google Scholar 

  63. Lions, P. L., Perthame, B. and Souganidis, P. E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49, 1996, 599–638.

    Article  MathSciNet  MATH  Google Scholar 

  64. Lions, P. L., Perthame, B. and Tadmor, E., Kinetic formulation of the isentropic gas dynamics and psystems, Comm. Math. Phys., 163, 1994, 415–431.

    Article  MathSciNet  MATH  Google Scholar 

  65. Mardare, S., The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity, 73, 2003, 251–290.

    Article  MathSciNet  MATH  Google Scholar 

  66. Mardare, S., On Pfaff systems with Lp coefficients and their applications in differential geometry, J. Math. Pure Appl., 84, 2005, 1659–1692.

    Article  MathSciNet  MATH  Google Scholar 

  67. Morawetz, C. S., On a weak solution for a transonic flow problem, Comm. Pure Appl. Math., 38, 1985, 797–818.

    Article  MathSciNet  MATH  Google Scholar 

  68. Morawetz, C. S., An alternative proof of DiPerna’s theorem, Comm. Pure Appl. Math., 44, 1991, 1081–1090.

    Article  MathSciNet  MATH  Google Scholar 

  69. Morawetz, C. S., On steady transonic flow by compensated compactness, Methods Appl. Anal., 2, 1995, 257–268.

    MathSciNet  MATH  Google Scholar 

  70. Murat, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., 5, 1978, 489–507.

    MathSciNet  MATH  Google Scholar 

  71. Murat, F., Compacité par compensation, II, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, 1979, 245–256 (in French).

    Google Scholar 

  72. Murat, F., L’injection du cône positif de H −1 dans W −1,q est compacte pour tout q < 2, J. Math. Pures Appl., 60(9), 1981, 309–322 (in French).

    MathSciNet  MATH  Google Scholar 

  73. Murat, F., Compacité par compensation: Condition nécessaire et suffisante de continuité faible sous une hypothse de rang constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(1), 1981, 69–102 (in French).

    MathSciNet  MATH  Google Scholar 

  74. Murat, F., A survey on compensated compactness, Contributions to Modern Calculus of Variations (Bologna, 1985), Pitman Res. Notes Math. Ser., 148, Longman Sci. Tech., Harlow, 1987, 145–183.

  75. Nash, J., The imbedding problem for Riemannian manifolds, Ann. Math., 63(2), 1956, 20–63.

    Article  MathSciNet  MATH  Google Scholar 

  76. Oleinik, O. A., Discontinuous solutions of non-linear differential equations, Usp. Mat. Nauk., 12, 1957, 3–73; English translation: AMS Translations, Ser. II, 26, 95–172.

    MathSciNet  Google Scholar 

  77. Perthame, B. and Tzavaras, A. E., Kinetic formulation for systems of two conservation laws and elastodynamicsvArch, Rational Mech. Anal, 155, 2000, 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  78. Rauch, J., BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one, Comm. Math. Phys., 106, 1986, 481–484.

    Article  MathSciNet  MATH  Google Scholar 

  79. Rosseland, S., The Pulsation Theory of Variable Stars, Dover Publications, New York, 1964.

    Google Scholar 

  80. Schonbek, M. E., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Diff. Eqs., 7, 1982, 95,9–1000.

    Article  MathSciNet  MATH  Google Scholar 

  81. Serre, D., La compacité par compensation pour les systèmes non linéaires de deux equations a une dimension d’espace, J. Math. Pures Appl., 65, 1987423–468.

    Google Scholar 

  82. Serre, D. and Shearer, J. W., Convergence with physical viscosity for nonlinear elasticity, preprint, 1994 (unpublished).

    Google Scholar 

  83. Smoller, J., Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  84. Tadmor, E., Rascle, M. and Bagnerini, P., Compensated compactness for 2D conservation laws, J. Hyper. Diff. Eqs., 2, 2005697–712.

    Article  MathSciNet  MATH  Google Scholar 

  85. Tartar, L., Compensated compactness and applications to partial differential equations, Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Herriot-Watt Symposium, Vol. 4, R. J. Knops (ed.), Pitman Press, Boston, 1979.

  86. Tartar, L., The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 111, Reidel, Dordrecht, 1983, 263–285.

    Google Scholar 

  87. Tartar, L., Compacité par compensation: Résultats et perspectives, Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar (Paris, 1981/1982), Vol. IV, 350–369, Res. Notes in Math., 84, Pitman, Boston, 1983 (in French).

    Google Scholar 

  88. Tartar, L., Oscillations in nonlinear partial differential equations: Compensated compactness and homogenization, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N. M., 1984), 243–266, Lectures in Appl. Math., 23, A. M. S., Providence, RI, 1986.

    Google Scholar 

  89. Tartar, L., Discontinuities and oscillations, Directions in Partial Differential Equations (Madison, 1985), Publ. Math. Res. Center Univ. Wisconsin, 54, Academic Press, Boston, 1987, 211–233.

    Google Scholar 

  90. Tartar, L., From Hyperbolic Systems to Kinetic Theory: A Personalized Quest, Lecture Notes of the Unione Matematica Italiana, 6, Springer-Verlag, Berlin; UMI, Bologna, 2008.

    Book  Google Scholar 

  91. Tartar, L., The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin; UMI, Bologna, 2009.

    Google Scholar 

  92. Vol’pert, A. I., Spaces BVand quasilinear equations, Mat. Sb. (N.S.), 73(115), 1967255 (in Russian).

    MathSciNet  Google Scholar 

  93. Whitham, G. B., Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974.

    MATH  Google Scholar 

  94. Yau, S. T., Review of geometry and analysis, Mathematics: Frontiers and Perspectives, International Mathematics Union, V. Arnold, M. Atiyah, P. Lax and B. Mazur (eds.), A. M. S., Providence, RI, 2000, 353–401.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang G. Chen.

Additional information

In Honor of the Scientific Contributions of Professor Luc Tartar

This work was supported by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE (No. EP/E035027/1), the UK EPSRC Award to the EPSRC Centre for Doctoral Training in PDEs (No. EP/L015811/1), the National Natural Science Foundation of China (No. 10728101) and the Royal Society-Wolfson Research Merit Award (UK).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GQ.G. Weak continuity and compactness for nonlinear partial differential equations. Chin. Ann. Math. Ser. B 36, 715–736 (2015). https://doi.org/10.1007/s11401-015-0973-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0973-x

Keywords

2000 MR Subject Classification

Navigation