Skip to main content
Log in

Isometric Immersions and Compensated Compactness

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold \({{\mathcal M}^2}\) which can be realized as isometric immersions into \({\mathbb{R}^3}\). This problem can be formulated as initial and/or boundary value problems for a system of nonlinear partial differential equations of mixed elliptic-hyperbolic type whose mathematical theory is largely incomplete. In this paper, we develop a general approach, which combines a fluid dynamic formulation of balance laws for the Gauss-Codazzi system with a compensated compactness framework, to deal with the initial and/or boundary value problems for isometric immersions in \({\mathbb{R}^3}\). The compensated compactness framework formed here is a natural formulation to ensure the weak continuity of the Gauss-Codazzi system for approximate solutions, which yields the isometric realization of two-dimensional surfaces in \({\mathbb{R}^3}\).

As a first application of this approach, we study the isometric immersion problem for two-dimensional Riemannian manifolds with strictly negative Gauss curvature. We prove that there exists a C 1, 1 isometric immersion of the two-dimensional manifold in \({\mathbb{R}^3}\) satisfying our prescribed initial conditions. To achieve this, we introduce a vanishing viscosity method depending on the features of initial value problems for isometric immersions and present a technique to make the a priori estimates including the L control and H −1–compactness for the viscous approximate solutions. This yields the weak convergence of the vanishing viscosity approximate solutions and the weak continuity of the Gauss-Codazzi system for the approximate solutions, hence the existence of an isometric immersion of the manifold into \({\mathbb{R}^3}\) satisfying our initial conditions. The theory is applied to a specific example of the metric associated with the catenoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M.: A version of the fundamental theorem for Young measures. Lecture Notes in Phys. 344, Berlin: Springer, 1989, pp. 207–215

  2. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York: John Wiley & Sons, Inc., London: Chapman & Hall, Ltd., 1958

  3. Chen, G.-Q.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 6, 75–120 (1986) (in English); 8, 243–276 (1988) (in Chinese)

  4. Chen, G.-Q.: Euler equations and related hyperbolic conservation laws. In: Handbook of Differential Equations: Evolutionary Differential Equations, Vol. 2, Eds. Dafermos, C.M., Feireisl, E., Amsterdam: Elsevier Science B.V, 2005 pp. 1–104

  5. Chen G.-Q., Dafermos C.M., Slemrod M., Wang D. (2007) On two-dimensional sonic-subsonic flow. Commun. Math. Phys. 271: 635–647

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chen, G.-Q., LeFloch, Ph.: Compressible Euler equations with general pressure law. Arch. Rat. Mech. Anal. 153, 221–259 (2000); Existence theory for the isentropic Euler equations. Arch. Rat. Mech. Anal. 166, 81–98 (2003)

  7. Chen G.-Q., Slemrod M., Wang D. (2008) Vanishing viscosity method for transonic flow. Arch. Rat. Mech. Anal. 189: 159–188

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, G.-Q., Slemrod, M., Wang, D.: Weak continuity of the Gauss-Codazzi-Ricci system for isometric embedding. Proc. Amer. Math. Soc. 2009 (to appear)

  9. Courant R., Friedrichs K.O. (1948) Supersonic Flow and Shock Waves. Springer, New York

    MATH  Google Scholar 

  10. Dafermos C.M. (2005) Hyperbolic Conservation Laws in Continuum Physics 2nd edition. Springer-Verlag, Berlin

    MATH  Google Scholar 

  11. Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I)-(II). Acta Math. Sci. 5, 483–500, 501–540 (1985) (in English); 7, 467–480 (1987), 8, 61–94 (1988) (in Chinese)

  12. DiPerna R.J. (1983) Convergence of viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91: 1–30

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. DiPerna R.J. (1985) Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc. 292: 383–420

    Article  MathSciNet  Google Scholar 

  14. do Carmo, M.P.: Riemannian Geometry. Transl. by F. Flaherty, Boston, MA: Birkhäuser, 1992

  15. Dong G.-C. (1993) The semi-global isometric imbedding in R 3 of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly. J. Part. Diff. Eqs. 6: 62–79

    MATH  Google Scholar 

  16. Efimov, N.V.: The impossibility in Euclidean 3-space of a complete regular surface with a negative upper bound of the Gaussian curvature. Dokl. Akad. Nauk SSSR (N.S.), 150, 1206–1209 (1963); Sov. Math. Dokl. 4, 843–846 (1963)

  17. Efimov N.V. (1966) Surfaces with slowly varying negative curvature. Russ. Math. Surv. 21: 1–55

    Article  MATH  Google Scholar 

  18. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS-RCSM, 74, Providence, RI: Amer. Math. Soc., 1990

  19. Evans L.C. (1998) Partial Differential Equations. Amer. Math. Soc., Providence, RI

    MATH  Google Scholar 

  20. Gromov M. (1986) Partial Differential Relations. Springer-Verlag, Berlin

    MATH  Google Scholar 

  21. Han Q., Hong J.-X. (2006) Isometric embedding of Riemannian manifolds in Euclidean spaces. Amer. Math. Soc., Providence, RI

    MATH  Google Scholar 

  22. Hilbert D. (1901) Ueber flächen von constanter Gausscher Krümmung. Trans. Amer. Math. Soc. 2: 87–99

    Article  MATH  MathSciNet  Google Scholar 

  23. Hong J.-X. (1993) Realization in R 3 of complete Riemannian manifolds with negative curvature. Commun. Anal. Geom. 1: 487–514

    MATH  Google Scholar 

  24. Hong, J.-X.: Recent developments of realization of surfaces in \({\mathbb{R}^{3}}\). AMS/IP Stud. Adv. Math. 20, Providence, RI: Amer. Math. Soc., 2001

  25. Lions P.-L., Perthame B., Souganidis P. (1996) Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49: 599–638

    Article  MATH  MathSciNet  Google Scholar 

  26. Lions P.-L., Perthame B., Tadmor E. (1994) Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163: 169–172

    Article  MathSciNet  Google Scholar 

  27. Mardare S. (2003) The fundamental theorem of surface theory for surfaces with little regularity. J. Elasticity 73: 251–290

    Article  MATH  MathSciNet  Google Scholar 

  28. Mardare S. (2005) On Pfaff systems with L p coefficients and their applications in differential geometry. J. Math. Pure Appl. 84: 1659–1692

    MATH  MathSciNet  Google Scholar 

  29. Morawetz C.S. (1985) On a weak solution for a transonic flow problem. Comm. Pure Appl. Math. 38: 797–818

    Article  MATH  MathSciNet  Google Scholar 

  30. Morawetz C.S. (1995) On steady transonic flow by compensated compactness. Methods Appl. Anal. 2: 257–268

    MATH  MathSciNet  Google Scholar 

  31. Morawetz C.S. (2004) Mixed equations and transonic flow. J. Hyper. Diff. Eqs. 1: 1–26

    Article  MATH  MathSciNet  Google Scholar 

  32. Murat F. (1978) Compacite par compensation. Ann. Suola Norm. Pisa (4) 5: 489–507

    MATH  MathSciNet  Google Scholar 

  33. Nash J. (1956) The imbedding problem for Riemannian manifolds. Ann. Math. (2) 63: 20–63

    Article  MathSciNet  Google Scholar 

  34. Poznyak, È. G., Shikin, E.V.: Small parameters in the theory of isometric imbeddings of two-dimensional Riemannian manifolds in Euclidean spaces. In: Some Questions of Differential Geometry in the Large, Amer. Math. Soc. Transl. Ser. 2, 176, Providence, RI: Amer. Math. Soc., 1996, pp. 151–192

  35. Protter M.H., Weinberger H.F.L. (1984) Maximum Principles in Differential Equations. Springer, Berlin-Heidelberg-New York

    MATH  Google Scholar 

  36. Rozendorn, È. R.: Surfaces of negative curvature. In: Geometry, III, Encyclopaedia Math. Sci. 48, Berlin: Springer, 1992, pp. 87–178, 251–256

  37. Serre, D.: Systems of Conservation Laws. Vols. 1–2, Cambridge: Cambridge University Press, 1999, 2000

  38. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics. Heriot-Watt Symposium IV, Res. Notes in Math. 39, Boston-London: Pitman, 1979, pp. 136–212

  39. Vaziri A., Mahedevan L. (2008) Localized and extended deformations of elastic shells. Proc. National Acad. Sci. USA 105(23): 7913–7918

    Article  ADS  Google Scholar 

  40. Yau, S.-T.: Review of geometry and analysis. In: Mathematics: Frontiers and Perspectives. International Mathematics Union, Eds. V. Arnold, M. Atiyah, P. Lax, B. Mazur, Providence, RI: Amer. Math. Soc., 2000, pp. 353–401

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang Chen.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GQ., Slemrod, M. & Wang, D. Isometric Immersions and Compensated Compactness. Commun. Math. Phys. 294, 411–437 (2010). https://doi.org/10.1007/s00220-009-0955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0955-5

Keywords

Navigation