Skip to main content
Log in

Some smoothness results for classical problems in optimal design and applications

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The author considers two classical problems in optimal design consisting in maximizing or minimizing the energy corresponding to the mixture of two isotropic materials or two-composite material. These results refer to the smoothness of the optimal solutions. They also apply to the minimization of the first eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Shape Optimization by the Homogenization Method, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  2. Briane, M. and Casado-Díaz, J., Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients, J. Differential Equations, 245, 2008, 2038–2054.

    Article  MathSciNet  MATH  Google Scholar 

  3. Casado-Díaz, J., Couce-Calvo, J. and Martín-Gómez, J. D., Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient, SIAM J. Control Optim., 43, 2008, 1428–1457.

    Article  Google Scholar 

  4. Casado-Díaz, J., Smoothness properties for the optimal mixture of two isotropic materials, the compliance and eigenvalue problems, SIAM J. Control Optim., to appear.

  5. Casado-Díaz, J., Some smoothness results for the optimal design of a two-composite material which minimizes the energy, Calc. Var. PDE, 53, 2015, 649–673.

    Article  Google Scholar 

  6. Chipot, M. and Evans, L., Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. Roy. Soc. Edinburgh A, 102, 1986, 291–303.

    Article  MathSciNet  MATH  Google Scholar 

  7. Franchi, B., Serapioni, R. and Serra Cassano, F., Irregular solutions of linear degenerate elliptic equations, Potential Anal., 9, 1998, 201–216.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

    MATH  Google Scholar 

  9. Goodman, J., Kohn, R. V. and Reyna, L., Numerical study of a relaxed variational problem for optimal design, Comput. Methods Appl. Mech. Eng., 57, 1986, 107–127.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawohl, B., Stara, J. and Wittum, G., Analysis and numerical studies of a problem of shape design, Arc. Rational Mech. Anal., 114, 1991, 343–363.

    MathSciNet  Google Scholar 

  11. Lions, J. L., Some Methods in the Mathematical Analysis of Systems and Their Control, Science Press, Beijing, 1981.

    MATH  Google Scholar 

  12. Manfredi, J. J., Weakly monotone functions, J. Geom. Anal., 4, 1994, 393–402.

    Article  MathSciNet  MATH  Google Scholar 

  13. Murat, F., Un contre-example pour le problème du contrôle dans les coefficients, C. R. A. S. Sci. Paris A, 273, 1971, 708–711.

    MathSciNet  MATH  Google Scholar 

  14. Murat, F., Théorèmes de non existence pour des problèmes de contrôle dans les coefficients, C. R. A. S. Sci. Paris A, 274, 1972, 395–398.

    MathSciNet  MATH  Google Scholar 

  15. Murat, F., H-Convergence, Séminaire d’Analyse Fonctionnelle et Numérique, Université d’Alger, 197, 7–1978; English translation: H-Convergence, Topics in the Mathematical Modelling of Composite Materials, F. Murat and L. Tartar (eds.), Birkaüser, Boston, 1998, 21–43.

  16. Murat, F. and Tartar L., Calcul des variations et homogénéisation, Les Méthodes de L’homogénéisation: Theorie et Applications en Physique, Eirolles, Paris, 1985, 319–369; English translation: Calculus of variations and homogenization, Topics in the Mathematical Modelling of Composite Materials, F. Murat and L. Tartar (eds.), Birkaüser, Boston, 1998 139–174.

  17. Serrin J., A symmetry problem in potential theory, Arch. Rat. Mech. Anal., 43, 1971, 304–318.

    Article  MathSciNet  MATH  Google Scholar 

  18. Spagnolo, S., Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1968, 571–597.

    Google Scholar 

  19. Stampacchia, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier Grenoble, 15, 1965, 189–258.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tartar, L., Estimations fines de coefficients Homogénéisés, Ennio de Giorgi Colloquium, Pitman, London, 1985, 168–187.

    Google Scholar 

  21. Tartar, L., Remarks on optimal design problems, Calculus of Variations, Homogenization and Continuum Mechanics, World Scientific, Singapore, 1994, 279–296.

    Google Scholar 

  22. Tartar, L., An introduction to the homogenization method in optimal design, Optimal Shape Design, Springer-Verlag, Berlin, 2000, 47–156.

    Google Scholar 

  23. Tartar, L., The general theory of the homogenization, A Personalized Introduction, Springer-Verlag, Berlin, 2009.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Casado-Díaz.

Additional information

In Honor of the Scientific Contributions of Professor Luc Tartar

This work was supported by the project of the “Ministerio de Economía y Competitividad” of Spain (No. MTM2011-24457).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casado-Díaz, J. Some smoothness results for classical problems in optimal design and applications. Chin. Ann. Math. Ser. B 36, 703–714 (2015). https://doi.org/10.1007/s11401-015-0972-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0972-y

Keywords

2000 MR Subject Classification

Navigation