Skip to main content

Advertisement

Log in

Some smoothness results for the optimal design of a two-composite material which minimizes the energy

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the smoothness properties of the optimal solutions corresponding to the minimization of the potential energy for the mixture of two isotropic materials (electric, thermic, elastic membrane,\(\ldots \)). As it is well known this problem has not solution in general and therefore our results refer to a relaxed formulation. We show that the state function \(u\) is twice derivable and that the optimal proportion is derivable in the direction of \(\nabla u\). We also get some uniqueness results and applications to the non-existence of classical (unrelaxed) solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Appl. Math. Sci., vol. 146. Springer, New York (2002)

  2. Briane, M., Casado-Díaz, J.: Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients. J. Differ. Equ. 245, 2038–2054 (2008)

    Article  MATH  Google Scholar 

  3. Casado-Díaz, J., Couce-Calvo, J., Martín-Gómez, J.D.: Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient. SIAM J. Control Optim. 43, 1428–1457 (2008)

    Article  Google Scholar 

  4. Casado-Díaz, J.: Smoothness properties for the optimal mixture of two isotropic materials. The compliance and eigenvalue problems (to appear)

  5. Franchi, B., Serapioni, R., Serra Cassano, F.: Irregular solutions of linear degenerate elliptic equations. Potential Anal. 9, 201–216 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  7. Goodman, J., Kohn, R.V., Reyna, L.: Numerical study of a relaxed variational problem for optimal design. Comput. Methods Appl. Mech. Eng. 57, 107–127 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kawohl, B., Stara, J., Wittum, G.: Analysis and numerical studies of a problem of shape design. Arc. Rational Mech. Anal. 114, 343–363 (1991)

    MathSciNet  Google Scholar 

  9. Lions, J.L.: Some Methods in the Mathematical Analysis of Systems and Their Control. Science Press, Beijing (1981)

    MATH  Google Scholar 

  10. Lurie, K.A., Cherkaev, A.V.: Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinburgh 104 A, 21–38 (1986)

    Article  MathSciNet  Google Scholar 

  11. Manfredi, J.J.: Weakly monotone functions. J. Geom. Anal. 4, 393–402 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Murat, F.: Un contre-example pour le problème du contrôle dans les coefficients. C.R.A.S. Sci. Paris A 273, 708–711 (1971)

    MATH  MathSciNet  Google Scholar 

  13. Murat, F.: Théorèmes de non existence pour des problèmes de contrôle dans les coefficients. C.R.A.S. Sci. Paris A 274, 395–398 (1972)

    MATH  MathSciNet  Google Scholar 

  14. Murat, F.: H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique, 1977–78, Université d’Alger, multicopied, 34 pp. English translation : Murat, F., Tartar, L.: H-convergence. In: Cherkaev, L., Kohn, R.V. (eds.) Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Diff. Equ. and their Appl., vol. 31, pp. 21–43. Birkaüser, Boston (1998)

  15. Murat, F., Tartar, L.: Calcul des variations et homogénéisation. In: Les méthodes de l’homogénéisation: theorie et applications en physique, pp. 319–369. Eirolles, Paris (1985). English translation : Murat F., Tartar, L.: Calculus of variations and homogenization. In: Cherkaev, L., Kohn R.V. (eds.) Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Diff. Equ. and their Appl., vol. 31, pp. 139–174. Birkaüser, Boston (1998)

  16. Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 571–597 (1968)

    MATH  MathSciNet  Google Scholar 

  17. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier, Grenoble 15, 189–258 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tartar, L.: Estimations fines de coefficients homogénéisés. In: Kree, P. (ed.) Ennio de Giorgi colloquium. Research Notes in Mathematics, pp. 168–187. Pitman, London (1985)

    Google Scholar 

  19. Tartar, L.: Remarks on optimal design problems. In: Bouchitté, G., Buttazzo, G., Suquet, P. (eds.) Calculus of Variations, Homogenization and Continuum Mechanics. Series on Adv. in Math. for Appl. Sci., vol. 18, pp. 279–296. Word Scientific, Singapore (1994)

    Google Scholar 

  20. Tartar, L.: An introduction to the homogenization method in optimal design. In: Cellina, A., Ornelas, A. (eds.) Optimal Shape Design. Lecture Notes in Mathematics, vol. 1740, pp. 47–156. Springer, Berlin (2000)

    Chapter  Google Scholar 

  21. Tartar, L.: The general theory of the homogenization. A personalized introduction. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the project MTM2011-24457 of the “Ministerio de Economía y Competitividad” of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Casado-Díaz.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casado-Díaz, J. Some smoothness results for the optimal design of a two-composite material which minimizes the energy. Calc. Var. 53, 649–673 (2015). https://doi.org/10.1007/s00526-014-0762-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0762-5

Mathematics Subject Classification

Navigation