Skip to main content
Log in

On asymptotic behavior for singularities of the powers of mean curvature flow

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Let M n be a smooth, compact manifold without boundary, and F 0: M nR n+1 a smooth immersion which is convex. The one-parameter families F(·, t): M n × [0, T) → R n+1 of hypersurfaces M n t = F(·, t)(M n) satisfy an initial value problem dt/dF(·, t) = −H k(·, t)ν(·, t), F(·, 0) = F 0(·), where H is the mean curvature and ν(·, t) is the outer unit normal at F(·, t), such that −H ν = \( \overrightarrow H \) is the mean curvature vector, and k > 0 is a constant. This problem is called H k-flow. Such flow will develop singularities after finite time. According to the blow-up rate of the square norm of the second fundamental forms, the authors analyze the structure of the rescaled limit by classifying the singularities as two types, i.e., Type I and Type II. It is proved that for Type I singularity, the limiting hypersurface satisfies an elliptic equation; for Type II singularity, the limiting hypersurface must be a translating soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B., Contraction of convex hypersurfaces in Euclidian space, Calc. Var., 2, 1994, 151–171.

    Article  MATH  Google Scholar 

  2. Andrews, B., Harnack inequalities for evolving hypersurfaces, Math. Z., 217, 1994, 179–197.

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrews, B., Motion of hypersurfaces by Gauss curvature, Pacific J. Math., 195, 2000, 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrews, B., Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16, 2003, 443–459.

    Article  MATH  MathSciNet  Google Scholar 

  5. Andrews, B., Contraction of convex hypersurfaces by their affine normal, J. Diff. Geom., 43, 1996, 207–230.

    MATH  Google Scholar 

  6. Chou, K. S. and Zhu, X. P., A convexity theorem for a class of anisotropic flows of plane curves, Indiana Univ. Math. J., 48, 1999, 139–154.

    Article  MATH  MathSciNet  Google Scholar 

  7. Chow, B., Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Diff. Geom., 22, 1985, 117–138.

    MATH  Google Scholar 

  8. Chow, B., Deforming hypersurfaces by the square root of the scalar curvature, Invent. Math., 87, 1987, 63–82.

    Article  MATH  MathSciNet  Google Scholar 

  9. Firey, W. J., On the shapes of worn stones, Mathematika, 21, 1974, 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gage, M. E., Evolving plane curves by curvature in relative geometries, Duke Math. J., 72, 1993, 441–466.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gage, M. E. and Hamilton, R., The heat equation shrinking convex plane curves, J. Diff. Geom., 23, 1986, 69–96.

    MATH  MathSciNet  Google Scholar 

  12. Gerhardt, C., Flow of nonconvex hypersurfaces into sphere, J. Diff. Geom., 32, 1990, 299–314.

    MATH  MathSciNet  Google Scholar 

  13. Grayson, M., The heat equation shrinks embedded closed curves to round points, J. Diff. Geom., 26, 1987, 285–314.

    MATH  MathSciNet  Google Scholar 

  14. Hamilton, R., Harnack estimate for the mean curvature flow, J. Diff. Geom., 41, 1995, 215–226.

    MATH  MathSciNet  Google Scholar 

  15. Huisken, G., Flow by meancurvature of convex surfaces into spheres, J. Diff. Geom., 20, 1984, 237–266.

    MATH  MathSciNet  Google Scholar 

  16. Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom., 31, 1990, 285–299.

    MATH  MathSciNet  Google Scholar 

  17. Huisken, G. and Polden, A., Geometric evolution equations for hypersurfaces, Calculus of Variations and Geometric Evolution Problems, CIME Lectures of Cetraro of 1996, Lecture Notes in Math., Vol. 1713, Springer, Berlin, 1999, 45–84.

    Google Scholar 

  18. Huisken, G. and Sinestrari, C., Mean curvature flow singularities for mean convex surface, Calc. Var., 8, 1999, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  19. Huisken, G. and Sinestrari, C., Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183, 1999, 47–70.

    Article  MathSciNet  Google Scholar 

  20. Krylov, N. V., Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, Dordrecht, 1987.

    MATH  Google Scholar 

  21. Li, P. and Tau, S. T., On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 1986, 153–201.

    Article  MathSciNet  Google Scholar 

  22. Lieberman, G. M., Second Order Parabolic Diffrential Equations, World Scientific, Singapore, 1996.

    Google Scholar 

  23. Oaks, J., Singularities and self-intersections of curves evolving on surfaces, Indiana Univ. Math. J., 43, 1994, 959–981.

    Article  MATH  MathSciNet  Google Scholar 

  24. Schulze, F., Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z., 251, 2005, 721–733.

    Article  MATH  MathSciNet  Google Scholar 

  25. Tso, K., Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math., 38, 1985, 867–882.

    Article  MATH  MathSciNet  Google Scholar 

  26. Urbas, J. I. E., Complete noncompact self-similar solutions of Gauss curvature flows I, positive powers, Math. Ann., 311, 1998, 251–274.

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, J., Harnack estimate for the H k-flow, Sci. Chin., Ser. A, 50, 2007, 1642–1650.

    Article  MATH  Google Scholar 

  28. Wang, X. J., Convex solutions to the mean curvature flow. arXiv: amth.DG/0404326

  29. White, B., The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc., 13, 2003, 665–695.

    Article  Google Scholar 

  30. Zhu, X. P., Lectures on Mean Curvature Flows, AMS/IP Studies in Advanced Mathematics, Vol. 32, International Press, Somervill, MA, A. M. S., Providence, RI, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Sheng.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10771189, 10831008)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, W., Wu, C. On asymptotic behavior for singularities of the powers of mean curvature flow. Chin. Ann. Math. Ser. B 30, 51–66 (2009). https://doi.org/10.1007/s11401-007-0448-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-007-0448-9

Keywords

2000 MR Subject Classification

Navigation