Skip to main content
Log in

Global geometry of 3-body motions with vanishing angular momentum I

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Following Jacobi’s geometrization of Lagrange’s least action principle, trajectories of classical mechanics can be characterized as geodesics on the configuration space M with respect to a suitable metric which is the conformal modification of the kinematic metric by the factor (U + h), where U and h are the potential function and the total energy, respectively. In the special case of 3-body motions with zero angular momentum, the global geometry of such trajectories can be reduced to that of their moduli curves, which record the change of size and shape, in the moduli space of oriented m-triangles, whose kinematic metric is, in fact, a Riemannian cone over the shape space M *S 2(1/2).

In this paper, it is shown that the moduli curve of such a motion is uniquely determined by its shape curve (which only records the change of shape) in the case of h h ≠ 0, while in the special case of h = 0 it is uniquely determined up to scaling. Thus, the study of the global geometry of such motions can be further reduced to that of the shape curves, which are time-parametrized curves on the 2-sphere characterized by a third order ODE. Moreover, these curves have two remarkable properties, namely the uniqueness of parametrization and the monotonicity, that constitute a solid foundation for a systematic study of their global geometry and naturally lead to the formulation of some pertinent problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Euler, L., De motu rectilineo trium corporum se mutuo attahentium, Novi Commun. Acad. Sci. Imp. Petrop., 11, 1767, 144–151.

    Google Scholar 

  2. Fujiwara, T., Fukuda, H., Kameyama, A., Ozaki, H. and Yamada, M., Synchronized similar triangles for three-body orbits with zero angular momentum, J. Phys. A: Math. Gen., 37, 2004, 10571–10584.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hsiang, W. Y., Geometric Study of the Three-Body Problem, I, Center for Pure and Applied Math., Univ. of Calif., Berkeley, PAM-620, 1994.

    Google Scholar 

  4. Hsiang, W. Y. and Straume, E., Kinematic Geometry of Triangles with Given Mass Distribution, Center for Pure and Applied Math., Univ. of Calif., Berkeley, PAM-636, 1995.

    Google Scholar 

  5. Hsiang, W. Y. and Straume, E., Kinematic geometry of triangles and the study of the three-body problem, Lobachevskii J. of Math., 25, 2007, 9–130.

    MathSciNet  MATH  Google Scholar 

  6. Jacobi, C. G. J., Vorlesungen über Dynamik, Reimer, Berlin, 1866.

    Google Scholar 

  7. Lagrange, J. L., Essai sur le probl`eme de trois corps, Ouvres, 6, 1772, 229–324.

    Google Scholar 

  8. Levi-Civita, T., Sur la régularisation du problème de trois corps, Acta Math., 42, 1920, 99–144.

    Article  MathSciNet  Google Scholar 

  9. Montgomery, R., Infinitely many syzygies, Arch. Rat. Mech. Anal., 164, 2002, 311–340.

    Article  MATH  Google Scholar 

  10. Siegel, C. L., Der Dreierstoss, Ann. of Math., 42, 1941, 127–168.

    Article  MathSciNet  Google Scholar 

  11. Siegel, C. L., Lectures on the Singularities of the Three-body Problem, Tata Institute of Fundamental Research Lectures on Mathematics, No. 42, Tata Institute of Fundamental Research, Bombay, 1967.

    MATH  Google Scholar 

  12. Siegel, C. L. and Moser, J., Lectures on Celestial Mathematics, Die Grundlehren der Mathematischen Wissenschaften, Vol. 187, Springer-Verlag, New York, 1971.

    Google Scholar 

  13. Straume, E., On the geometry and behavior of n-body motions, Internat. J. of Math. and Math. Sci., 28(12), 2001, 689–732.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sundman, K. F., Recherches sur le problème de trois corps, Acta Soc. Sci. Fennicae, 34, 1907, 144–151.

    Google Scholar 

  15. Sundman, K. F., Mémoire sur le problème de trois corps, Acta Math., 36, 1912, 105–179.

    Article  MathSciNet  MATH  Google Scholar 

  16. Wintner, A., The Analytic Foundations of Celestial Mechanics, Princeton Univ. Press, Princeton, 1947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldar Straume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiang, WY., Straume, E. Global geometry of 3-body motions with vanishing angular momentum I. Chin. Ann. Math. Ser. B 29, 1–54 (2008). https://doi.org/10.1007/s11401-007-0153-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-007-0153-8

Keywords

2000 MR Subject Classification

Navigation