Skip to main content

Advertisement

Log in

CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Identification of abnormal cervical cells is a significant problem in computer-aided diagnosis of cervical cancer. In this study, we develop an artificial intelligence (AI) system, named CytoBrain, to automatically screen abnormal cervical cells to help facilitate the subsequent clinical diagnosis of the subjects. The system consists of three main modules: 1) the cervical cell segmentation module which is responsible for efficiently extracting cell images in a whole slide image (WSI); 2) the cell classification module based on a compact visual geometry group (VGG) network called CompactVGG which is the key part of the system and is used for building the cell classiffier; 3) the visualized human-aided diagnosis module which can automatically diagnose a WSI based on the classification results of cells in it, and provide two visual display modes for users to review and modify. For model construction and validation, we have developed a dataset containing 198 952 cervical cell images (60 238 positive, 25 001 negative, and 113 713 junk) from samples of 2 312 adult women. Since CompactVGG is the key part of CytoBrain, we conduct comparison experiments to evaluate its time and classification performance on our developed dataset and two public datasets separately. The comparison results with VGG11, the most efficient one in the family of VGG networks, show that CompactVGG takes less time for either model training or sample testing. Compared with three sophisticated deep learning models, CompactVGG consistently achieves the best classification performance. The results illustrate that the system based on CompactVGG is efficient and effective and can support for large-scale cervical cancer screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Center M M, DeSantis C, Ward E M. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology Biomarkers and Prevention, 2010, 19(8): 1893-1907. https://doi.org/10.1158/1055-9965.EPI-10-0437.

    Article  Google Scholar 

  2. Prat J, Franceschi S. Cancers of the female reproductive organs. In World Cancer Report 2014, Stewart B W, Wild C P (eds.), International Agency for Research on Cancer, 2014, pp.465-481.

  3. Adem K, Kiliçarslan S, Cömert O. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Systems with Applications, 2019, 115: 557-564. https://doi.org/10.1016/j.eswa.2018.08.050.

    Article  Google Scholar 

  4. Kurnianingsih, Allehaibi K H S, Nugroho L E, Widyawan, Lazuardi L, Prabuwono A S, Mantoro T. Segmentation and classification of cervical cells using deep learning. IEEE Access, 2019, 7(99): 116925-116941. https://doi.org/10.1109/ACCESS.2019.2936017.

  5. Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  6. Wittet S, Goltz S, Cody A. Progress in cervical cancer prevention: The CCA report card. Technical Report, Cervical Cancer Action, 2011. https://path.azureedge.net/media/documents/RH_cca_report_card.pdf, Mar. 2020.

  7. Schwaiger C, Aruda M, Lacoursiere S, Rubin R. Current guidelines for cervical cancer screening. Journal of the American Academy of Nurse Practitioners, 2012, 24(7): 417-424. https://doi.org/10.1111/j.1745-7599.2012.00704.x.

    Article  Google Scholar 

  8. William W, Ware A, Basaza-Ejiri A H, Obungoloch J. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Computer Methods and Programs in Biomedicine, 2018, 164: 15-22. https://doi.org/10.1016/j.cmpb.2018.05.034.

    Article  Google Scholar 

  9. William W, Ware A, Basaza-Ejiri A H, Obungoloch J. Cervical cancer classification from Pap-smears using an enhanced fuzzy C-means algorithm. Informatics in Medicine Unlocked, 2019, 14: 23-33. https://doi.org/10.1016/j.imu.2019.02.001.

    Article  Google Scholar 

  10. Bora K, Chowdhury M, Mahanta L B, Kundu M K, Das A K. Automated classification of Pap smear images to detect cervical dysplasia. Computer Methods and Programs in Biomedicine, 2017, 138: 31-47. https://doi.org/10.1016/j.cmpb.2016.10.001.

    Article  Google Scholar 

  11. McDonald J T, Kennedy S. Cervical cancer screening by immigrant and minority women in Canada. Journal of Immigrant and Minority Health, 2007, 9(4): 323-334. https://doi.org/10.1007/s10903-007-9046-x.

    Article  Google Scholar 

  12. Elsheikh T M, Austin R M, Chhieng D F, Miller F S, Moriarty A T, Renshaw A A. American society of cytopathology workload recommendations for automated Pap test screening: Developed by the productivity and quality assurance in the era of automated screening task force. Diagnostic Cytopathology, 2013, 41(2): 174-178. https://doi.org/10.1002/dc.22817.

    Article  Google Scholar 

  13. Yamal J M, Guillaud M, Atkinson E N, Follen M, MacAulay C, Cantor S B, Cox D D. Prediction using hierarchical data: Applications for automated detection of cervical cancer. Statistical Analysis and Data Mining, 2015, 8(2): 65-74. https://doi.org/10.1002/sam.11261.

    Article  MathSciNet  MATH  Google Scholar 

  14. Su J, Xu X, He Y, Song J. Automatic detection of cervical cancer cells by a two-level cascade classification system. Analytical Cellular Pathology, 2016, 2016: Article No. 9535027. https://doi.org/10.1155/2016/9535027.

  15. Kurniawati Y E, Permanasari A E, Fauziati S. Comparative study on data mining classification methods for cervical cancer prediction using pap smear results. In Proc. the 1st International Conference on Biomedical Engineering, Oct. 2016. https://doi.org/10.1109/IBIOMED.2016.7869827.

  16. Sharma M, Singh S K, Agrawal P, Madaan V. Classification of clinical dataset of cervical cancer using KNN. Indian Journal of Science and Technology, 2016, 9(28): 1-5. https://doi.org/10.17485/ijst/2016/v9i28/98380.

  17. Liu Y, Zhang P, Song Q, Li A, Zhang P, Gui Z. Automatic segmentation of cervical nuclei based on deep learning and a conditional random field. IEEE Access, 2018, 6: 53709-53721. https://doi.org/10.1109/ACCESS.2018.2871153.

    Article  Google Scholar 

  18. Wang P, Wang L, Li Y, Song Q, Lv S, Hu X. Automatic cell nuclei segmentation and classification of cervical Pap smear images. Biomedical Signal Processing and Control, 2019, 48: 93-103. https://doi.org/10.1016/j.bspc.2018.09.008.

    Article  Google Scholar 

  19. Gupta R, Sarwar A, Sharma V. Screening of cervical cancer by artificial intelligence based analysis of digitized Papanicolaou-smear images. International Journal of Contemporary Medical Research, 2017, 4(5): 1108-1113. https://doi.org/10.21276/ijcmr.

  20. Wu W, Zhou H. Data-driven diagnosis of cervical cancer with support vector machine-based approaches. IEEE Access, 2017, 5: 25189-25195. https://doi.org/10.1109/ACCESS.2017.2763984.

    Article  Google Scholar 

  21. Zhang L, Lu L, Nogues I, Summers R M, Liu S, Yao J. Deep-Pap: Deep convolutional networks for cervical cell classification. IEEE Journal of Biomedical and Health Informatics, 2017, 21(6): 1633-1643. https://doi.org/10.1109/JBHI.2017.2705583.

    Article  Google Scholar 

  22. Nayar R, Wilbur D C. The Bethesda System for Reporting Cervical Cytology: Definitions, Criteria, and Explanatory Notes (3rd edition). Springer, 2015.

  23. Bay H, Tuytelaars T, Gool L V. SURF: Speeded up robust features. In Proc. the 9th European Conference on Computer Vision, May 2006, pp.404-417. https://doi.org/10.1007/11744023_32.

  24. Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, 1979, 9(1): 62-66. https://doi.org/10.1109/TSMC.1979.4310076.

    Article  Google Scholar 

  25. Soille P. Morphological Image Analysis: Principles and Applications (2nd edition). Springer-Verlag Berlin Heidelberg Publisher, 2003. https://doi.org/10.1007/978-3-662-05088-0.

  26. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/pdf/1409.1556.pdf, Mar. 2020.

  27. Wang J, Perez L. The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621, 2017. https://arxiv.org/pdf/1712.04621.pdf, Mar. 2020.

  28. Son J, Shin J Y, Kim H D, Jung K H, Park K H, Park S J. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology, 2020, 127(1): 85-94. https://doi.org/10.1016/j.ophtha.2019.05.029.

    Article  Google Scholar 

  29. Chalakkal R J, Abdulla W H, Thulaseedharan S S. Quality and content analysis of fundus images using deep learning. Computers in Biology and Medicine, 2019, 108: 317-331. https://doi.org/10.1016/j.compbiomed.2019.03.019.

    Article  Google Scholar 

  30. Ba J L, Kiros J R, Hinton G E. Layer normalization. arXiv:1607.06450, 2016. https://arxiv.org/pdf/160-7.06450.pdf, Mar. 2020.

  31. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proc. the 14th International Joint Conference on Artificial Intelligence, Aug. 1995, pp.1137-1143.

  32. Refaeilzadeh P, Tang L, Liu H. Cross-validation. In Encyclopedia of Database Systems, Liu L, Özsu M T (eds.), Springer, 2016, pp.532-538. https://doi.org/10.1007/978-0-387-39940-9_565.

  33. Zeiler M D. ADADELTA: An adaptive learning rate method. arXiv:1212.5701, 2012. https://arxiv.org/pdf/1212.5701.pdf, Mar. 2020.

  34. Xiang S, Liang Q, Hu Y, Tang P, Coppola G, Zhang D, Sun W. AMC-Net: Asymmetric and multi-scale convolutional neural network for multi-label HPA classification. Computer Methods and Programs in Biomedicine, 2019, 178: 275-287. https://doi.org/10.1016/j.cmpb.2019.07.009.

    Article  Google Scholar 

  35. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15: 1929-1958.

    MathSciNet  MATH  Google Scholar 

  36. Nielsen M. Improving the way neural networks learn. http://neuralnetworksanddeeplearning.com/chap3.html, Mar. 2020.

  37. Wang Y, Shen X, Yang Y. The classification of Chinese sensitive information based on BERT-CNN. In Artificial Intelligence Algorithms and Applications, Li K, Li W, Wang H, Liu Y (eds.), Springer, 2020, pp.269-280. https://doi.org/10.1007/978-981-15-5577-0_20.

  38. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. arXiv:1512.00567, 2015. https://arxiv.org/pdf/15-12.00567.pdf, Mar. 2020.

  39. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.770-778. https://doi.org/10.1109/CVPR.2016.90.

  40. Huang G, Liu Z, Maaten L V D, Weinberger K Q. Densely connected convolutional networks. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Jul. 2017, pp.2261-2269. https://doi.org/10.1109/CVPR.2017.243.

  41. Paul P R, Bhowmik M K, Bhattacharjee D. Automated cervical cancer detection using Pap smear images. In Proc. the 4th International Conference on Soft Computing for Problem Solving, Dec. 2014, pp.267-278. https://doi.org/10.1007/978-81-322-2217-0_23.

  42. Plissiti M E, Dimitrakopoulos P, Sfikas G, Nikou C, Krikoni O, Charchanti A. SIPaKMeD: A new dataset for feature and image based classification of normal and pathological cervical cells in Pap smear images. In Proc. the 25th IEEE International Conference on Image Processing, Oct. 2018, pp.3144-3148. https://doi.org/10.1109/ICIP.2018.8451588.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Liu.

Supplementary Information

ESM 1

(PDF 892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, J., Wen, QM. et al. CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology. J. Comput. Sci. Technol. 36, 347–360 (2021). https://doi.org/10.1007/s11390-021-0849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-0849-3

Keywords

Navigation