Journal of Computer Science and Technology

, Volume 25, Issue 1, pp 3–9 | Cite as

New Generations: Sequencing Machines and Their Computational Challenges

  • David C. SchwartzEmail author
  • Michael S. Waterman


New generation sequencing systems are changing how molecular biology is practiced. The widely promoted $1000 genome will be a reality with attendant changes for healthcare, including personalized medicine. More broadly the genomes of many new organisms with large samplings from populations will be commonplace. What is less appreciated is the explosive demands on computation, both for CPU cycles and storage as well as the need for new computational methods. In this article we will survey some of these developments and demands.


genome sequencing new generation sequencing read mapping optical mapping sequence assembly Eulerian graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Harris T D, Buzby P R, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch J W, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake S R, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320(5872): 106-109.CrossRefGoogle Scholar
  2. [2]
    Fuller C W, Middendorf L R, Benner S A, Church G M, Harris T, Huang X, Jovanovich S B, Nelson J R, Schloss J A, Schwartz D C, Vezenov D V. The challenges of sequencing by synthesis. Nat. Biotechnol., 2009, 27(11): 1013-1023.CrossRefGoogle Scholar
  3. [3]
    Pemov A, Modi H, Chandler D P, Bavykin S. DNA analysis with multiplex microarray-enhanced PCR. Nucleic Acids Res., 2005, 33(2): e11.CrossRefGoogle Scholar
  4. [4]
    Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science, 1998, 281(5375): 363-365.CrossRefGoogle Scholar
  5. [5]
    Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem., 1996, 242(1): 84-89.CrossRefGoogle Scholar
  6. [6]
    Bentley D R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev., 2006, 16(6): 545-552.CrossRefGoogle Scholar
  7. [7]
    Eid J, Fehr A, Gray J et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910): 133-138.CrossRefGoogle Scholar
  8. [8]
    Kasianowicz J J, Brandin E, Branton D, Deamer D W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA, 1996, 93(24): 13770-13773.CrossRefGoogle Scholar
  9. [9]
    Astier Y, Braha O, Bayley H. Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc., 2006, 128(5): 1705-1710.CrossRefGoogle Scholar
  10. [10]
    Branton D, Deamer D W, Marziali A et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol., 2008, 26(10): 1146-1153.CrossRefGoogle Scholar
  11. [11]
    Sigalov G, Comer J, Timp G, Aksimentiev A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano. Lett., 2008, 8(1): 56-63.CrossRefGoogle Scholar
  12. [12]
    Jett J H, Keller R A, Martin J C, Marrone B L, Moyzis R K, Ratliff R L, Seitzinger N K, Shera E B, Stewart C C. Highspeed DNA sequencing: An approach based upon fluorescence detection of single molecules. J. Biomol. Struct. Dyn., 1989, 7(2): 301-309.Google Scholar
  13. [13]
    Clarke J, Wu H C, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol., 2009, 4(4): 265-270.CrossRefGoogle Scholar
  14. [14]
    Zhang M Q, Smith A D. Challenges in understanding genomewide DNA methylation. J. Comput. Sci. & Technol., 2010, 25(1): 26-34.CrossRefGoogle Scholar
  15. [15]
    Morozova O, Marra M. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008, 92(5): 255-264.CrossRefGoogle Scholar
  16. [16]
    Chen Y, Souaiaia T, Chen T. PerM: Efficient mapping of short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics, 2009, 25 (19): 2514-2521.CrossRefGoogle Scholar
  17. [17]
    Staden R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res., June 11, 1979, 6(7): 2601-2610.CrossRefGoogle Scholar
  18. [18]
    Gingeras T R, Milazzo J P, Sciaky D, Roberts R J. Computer programs for the assembly of DNA sequences. Nucleic Acids Res., September 25, 1979, 7(9): 529-545.CrossRefGoogle Scholar
  19. [19]
    Gallant J, Maier D, Storer J. On finding minimal length superstrings. J. Computer System Sci., 1980, 20(1): 50-58.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Waterman M S. Introduction to Computational Biology. Chapman & Hall, 1995.Google Scholar
  21. [21]
    Kececioglu J D, Myers E W. Combinatiorial algorithms for DNA sequence assembly. Algorithmica, 1995, 13(1/2): 7-51.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Kececioglu J D. Exact and approximation algorithms for DNA sequence reconstruction [Ph.D. Dissertation]. University of Arizona, Tucson, USA, 1992.Google Scholar
  23. [23]
    Myers E W. Toward simplifying and accurately formulating fragment assembly. Journal of Computational Biology, 1995, 2(2): 275-290.CrossRefGoogle Scholar
  24. [24]
    Myers E S. The fragment assembly string graph. Bioinformatics, 2005, 21(Suppl. 2): ii79-ii85.CrossRefGoogle Scholar
  25. [25]
    Venter J C, Adams M D, Myers E W et al. The sequence of the human genome. Science, 2001, 291: 1304-1351.Google Scholar
  26. [26]
    Lander E S, Linton L M, Birren B et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.CrossRefGoogle Scholar
  27. [27]
    Istrail S, Sutton G, Florea L et al. Whole genome shotgun assembly and comparison of human genome assemblies. Proc. Natl. Acad. Sci. USA, 2003, 101(7): 1916-1921.CrossRefGoogle Scholar
  28. [28]
    Idury R, Waterman M S. A new algorithm for DNA sequence. J. Comput. Biol., 1995, 2(2): 291-306.CrossRefGoogle Scholar
  29. [29]
    Chaisson M J, Pevzner P A. Short read fragment assembly of bacterial genomes. Genome Res., 2008, 18(2): 324-330.CrossRefGoogle Scholar
  30. [30]
    Chaisson M J, Tang H, Pevzner P A. Fragment assembly with short reads. Bioinformatics, 2004, 20(13): 2067-2074.CrossRefGoogle Scholar
  31. [31]
    Myers E W. The fragment assembly string graph. Bioinformatics, 2005, 21(Suppl. 2): ii79-ii85, doi: 10.1093/bioinformatics/bti7114.
  32. [32]
    Pevzner P A, Tang H. Fragment assembly with doublebarreled data. Bioinformatics, 2001, 17(Suppl. 1): S225-S233.Google Scholar
  33. [33]
    Pevzner P A, Tang H, Waterman M S. A Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 2001, 98(17): 9748-9753.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Zerbino D R, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 2008, 18(5): 821-829.CrossRefGoogle Scholar
  35. [35]
    Church D M, Goodstadt L, Hillier L W et al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol., 2009, 7(5): e1000112.CrossRefGoogle Scholar
  36. [36]
    Valouev A, Schwartz D C, Zhou S, Waterman M S. An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15770-15775.CrossRefGoogle Scholar
  37. [37]
    Nagarajan N, Read T D, Pop M. Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics, 2008, 24(10): 1229-1235.CrossRefGoogle Scholar
  38. [38]
    Schwartz D C, Li X, Hernandez L, Ramnarain S P, Huff E J, Wang Y K. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science, 1993, 262(5130): 110-114.CrossRefGoogle Scholar
  39. [39]
    Zhou S, Herschleb J, Schwartz D C. A Single Molecule System forWhole Genome Analysis. New Methods for DNA Sequencing, Mitchelson K R (ed)., Amsterdam: Elsevier, 2007.Google Scholar
  40. [40]
    Dimalanta E T, Lim A, Runnheim R et al. A microfluidic system for large DNA molecule arrays. Anal. Chem., 2004, 76(18): 5293-5301.CrossRefGoogle Scholar
  41. [41]
    Valouev A, Zhang Y, Schwartz D C, Waterman M S. Refinement of optical map assemblies (original paper). Bioinformatics, 2006, 22(10): 1217-1224.CrossRefGoogle Scholar
  42. [42]
    Valouev A, Li L, Liu Y C, Schwartz D C, Yang Y, Zhang Y, Waterman M S. Alignment of optical maps. J. Comput. Biol., 2006, 13(2): 442-462.CrossRefMathSciNetGoogle Scholar
  43. [43]
    Jo K, Dhingra D M, Odijk T et al. A single-molecule barcoding system using nanoslits for DNA analysis. Proc. Natl. Acad. Sci. USA, 2007, 104(8): 2673-2678.CrossRefGoogle Scholar
  44. [44]
    Ramanathan A, Pape L, Schwartz D C. High-density polymerase-mediated incorporation of fluorochrome-labeled nucleotides. Analytical Biochemistry, 2005, 337(1): 1-11.CrossRefGoogle Scholar
  45. [45]
    Ramanathan A, Huff E J, Lamers C C, Potamousis K D. Forrest D K, Schwartz D C. An integrative approach for the optical sequencing of single DNA molecules. Analytical Biochemistry, 2004, 330(2): 227-241.CrossRefGoogle Scholar
  46. [46]
    Zhou S, Pape L, Schwartz D C. Optical Sequencing: Acquisition from Mapped Single Molecule Templates. Next Generation Genome Sequencing: Towards Personalized Medicine, Janitz M (ed.), 2008, Weinheim: Wiley-VCH Verlag & Co., pp.133-149.Google Scholar
  47. [47]
    Aguilera A, Gomez-Gonzalez B. Genome instability: A mechanistic view of its causes and consequences. Nat. Rev. Genet., 2008, 9(3): 204-217.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Laboratory for Molecular and Computational Genomics, Department of Chemistry and Laboratory of GeneticsUniversity of Wisconsin-MadisoWisconsinU.S.A.
  2. 2.Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesU.S.A.
  3. 3.Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations